Citation: | LI Sanzhong, SUO Yanhui, WANG Guangzeng, JIANG Zhaoxia, ZHAO Yanyan, LIU Yiming, LI Xiyao, GUO Lingli, LIU Bo, YU Shengyao, LIU Yongjiang, ZHANG Guowei. Tripole on seafloor and tripole on Earth surface: Dynamic connections[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 1-22. doi: 10.16562/j.cnki.0256-1492.2019070901 |
The three extreme regions of the Earth’s surface environment, i.e. the Antarctica, Arctic and Qinghai-Tibet Plateau, are known as the “three poles (tripole)” of the surface Earth system. In this paper, the concept of tripole of deep-Earth geodynamic system is proposed, which includes Tuzo, Jason and the Circum-East Asian subduction system. Since the principle parts of the deep-Earth tripole are developed mainly in the deep mantle beneath the seafloor, they are called hereby the seafloor tripole. The surface tripole and the deep tripole collectively consists of the “six poles” of the geosphere, which are the unavoidable research objects in the frontiers of geosciences, such as global change, deep-time Earth, deep-Earth geodynamics, Earth system and habitable Earth. They are the six links and breakthroughs in the multi-spherical interaction of the Earth as well as the key to search for the dynamic mechanism of the Earth system. Tuzo and Jason are Large Low Shear-wave Velocity Provinces (LLSVPs) located under the Atlantic and the Pacific, respectively. They control the formation and evolution of large igneous provinces and micro-plates, as well as centralized volcanic degassing which leads to the changes in atmospheric circulation. They also continuously cause the formation of micro-plates, push them moving northward, and constantly assemble them into the Circum-East Asian subduction system. A large amount of substances are subducted deeply to trigger the deep material circulation. Simultaneously, a large amount of greenhouse gases are released through island arcs, which changes the atmospheric circulation of the surface Earth system. Plate assembly and dispersion together will change the continent-ocean configuration patterns in addition to the global seaways, the uplift and collapse of the plateaus, and further regulate the operation of surface Earth fluid system, including both the ocean circulation and atmospheric circulation. The formation and evolution of ice sheets are also controlled by them. The “three poles” under the seafloor are indeed the fundamental controlling factors of the supercontinent convergence and dispersal in the geological history. The multi-scale periodic changes of the surface Earth system are mainly controlled by the eccentricity of the Earth around the Sun, the obliquity of the Earth axis and the precession. Climate change is driven by both tropical and ice-sheet driving forces. In a word, although the Earth is habitable after the Early Earth, the interaction between the geosphere and biosphere is extremely complex. The study of the geospheric “six poles” is doubtlessly the breakthrough and growth point for the study of habitable Earth.
[1] | 刘丰豪, 党皓文. 冰盖演变与冰期旋回[M]//中国大洋发现计划办公室, 海洋地质国家重点实验室(同济大学). 大洋钻探五十年. 上海: 同济大学出版社, 2018: 70-83. LIU Fenghao, DANG Haowen. The evolution of the ice sheet and glacial cycle[M]// In: The office of IODP-China, State Key Laboratory of Marine Geology(eds). Fifty Years of Ocean Drilling. 2018: 70-83. |
[2] | 黄恩清, 田军. 水文循环和季风演变[M]//中国大洋发现计划办公室, 海洋地质国家重点实验室(同济大学). 大洋钻探五十年. 上海: 同济大学出版社, 2018: 99-111. HUANG Enqing, TIAN Jun. Hydrological Cycle and Monsoon Evolution[M]// In: eds, The office of IODP-China, State Key Laboratory of Marine Geology(eds), Fifty Years of Ocean Drilling. 2018: 99-111. |
[3] | Brinkhuis H, Schouten S, Collinson M E, et al. Episodic fresh surface waters in the Eocene Arctic Ocean [J]. Nature, 2006, 441(7093): 606-609. doi: 10.1038/nature04692 |
[4] | Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum [J]. Nature, 2006, 441(7093): 610-613. doi: 10.1038/nature04668 |
[5] | Prueher L M, Rea D K. Volcanic triggering of late Pliocene glaciation: evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 173(3-4): 215-230. doi: 10.1016/S0031-0182(01)00323-6 |
[6] | Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature, 2008, 451(7176): 279-283. doi: 10.1038/nature06588 |
[7] | 许倬云. 万古江河: 中国历史文化的转折与开展[M]. 长沙: 湖南人民出版社, 2017: 1-540. XU Zuoyun, Eternal rivers: The transition and development of Chinese history and culture[M]. Hunan People's Publishing Press, 2019: 1-540. |
[8] | Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096 |
[9] | Haug G H, Tiedemann R. Effect of the formation of the isthmus of panama on Atlantic ocean thermohaline circulation [J]. Nature, 1998, 393(6686): 673-676. doi: 10.1038/31447 |
[10] | Montes C, Cardona A, Jaramillo C, et al. Middle Miocene closure of the central American seaway [J]. Science, 2015, 348(6231): 226-229. doi: 10.1126/science.aaa2815 |
[11] | Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago [J]. Nature, 2001, 411(6834): 157-162. doi: 10.1038/35075500 |
[12] | Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 Million years ago [J]. Nature, 20058, 433(7028): 821-825. |
[13] | Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions Within East Asian Marginal Seas. Washington DC: American Geophysical Union., 2004. |
[14] | Woodard S C, Rosenthal Y, Miller K G, et al. Antarctic role in Northern Hemisphere glaciation [J]. Science, 2014, 346(6211): 847-851. doi: 10.1126/science.1255586 |
[15] | Livermore R, Nankivell A, Eagles G, et al. Paleogene opening of Drake passage [J]. Earth and Planetary Science Letters, 2005, 236(1-2): 459-470. doi: 10.1016/j.jpgl.2005.03.027 |
[16] | Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago [J]. Nature, 1976, 260(5551): 513-515. doi: 10.1038/260513a0 |
[17] | Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063 |
[18] | Galeotti S, DeConto R, Naish T, et al. Antarctic ice sheet variability across the Eocene-Oligocene boundary climate transition [J]. Science, 2016, 352(6281): 76-80. doi: 10.1126/science.aab0669 |
[19] | Bijl P K, Schouten S, Sluijs A, et al. Early Palaeogene temperature evolution of the southwest Pacific Ocean [J]. Nature, 2009, 461(7265): 776-779. doi: 10.1038/nature08399 |
[20] | Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene [J]. Nature, 1991, 353(6341): 225-229. doi: 10.1038/353225a0 |
[21] | McInerney F A, Wing S L. The paleocene-eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future [J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 489-516. doi: 10.1146/annurev-earth-040610-133431 |
[22] | Coxall H K, Wilson P A, Pälike H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean [J]. Nature, 2005, 433(7021): 53-57. doi: 10.1038/nature03135 |
[23] | Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848. doi: 10.1029/90JB02015 |
[24] | Pound M J, Haywood A M, Salzmann U, et al. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma) [J]. Earth-Science Reviews, 2012, 112(1-2): 1-22. doi: 10.1016/j.earscirev.2012.02.005 |
[25] | Holbourn A, Kuhnt W, Schulz M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion [J]. Nature, 2005, 438(7067): 483-487. doi: 10.1038/nature04123 |
[26] | Tian J. Coherent variations of the obliquity components in global ice volume and ocean carbon reservoir over the past 5 Ma [J]. Science China Earth Sciences, 2013, 56(12): 2160-2172. doi: 10.1007/s11430-013-4750-y |
[27] | Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0 |
[28] | 吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1):1-30 WU Fuyuan, HUANG Baochun, YE Kai, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan plateau [J]. Acta Petrologica Sinica, 2008, 24(1): 1-30. |
[29] | Matthews K J, Müller R D, Sandwell D T. Oceanic microplate formation records the onset of India-Eurasia collision [J]. Earth and Planetary Science Letters, 2016, 433: 204-214. doi: 10.1016/j.jpgl.2015.10.040 |
[30] | Ali J R, Aitchison J C. Greater India [J]. Earth-Science Reviews, 2005, 72(3-4): 169-188. doi: 10.1016/j.earscirev.2005.07.005 |
[31] | Xiao W J, Ao S J, Yang L, et al. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision [J]. Science China Earth Sciences, 2017, 60(6): 1015-1039. doi: 10.1007/s11430-016-9043-3 |
[32] | Hou Z Q, Cook N J. Metallogenesis of the Tibetan collisional Orogen: a review and introduction to the special issue [J]. Ore Geology Reviews, 2009, 36(1-3): 2-24. doi: 10.1016/j.oregeorev.2009.05.001 |
[33] | Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 2015, 43(3): 247-250. doi: 10.1130/G36362.1 |
[34] | Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: a review [J]. Earth-Science Reviews, 2015, 143: 36-61. doi: 10.1016/j.earscirev.2015.01.001 |
[35] | 王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学: 地球科学, 2011, 54(1):29-44 WANG Guocan, CAO Kai, ZHANG Kexin, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic [J]. Science China Earth Sciences, 2011, 54(1): 29-44. |
[36] | Li J X, Yue L P, Roberts A P, et al. Global cooling and enhanced Eocene Asian mid-latitude interior aridity [J]. Nature Communication, 2018, 9(1): 3026. doi: 10.1038/s41467-018-05415-x |
[37] | Sun J M, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia [J]. Geology, 2015, 43(11): 1015-1018. doi: 10.1130/G37165.1 |
[38] | Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China [J]. Nature, 2002, 416(6877): 159-163. doi: 10.1038/416159a |
[39] | Zheng H B, Wei X C, Tada R, et al. Late Oligocene-early Miocene birth of the Taklimakan desert [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7662-7667. doi: 10.1073/pnas.1424487112 |
[40] | Kroon D, Steens T, Troelstra S R. Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers[M]//Prell W L, Niitsuma N. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1991: 257-263. |
[41] | Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze river [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110 |
[42] | Delescluse M, Montési L G J, Chamot-Rooke N. Fault reactivation and selective abandonment in the oceanic lithosphere [J]. Geophysical Research Letters, 2008, 35(16): L16312. doi: 10.1029/2008GL035066 |
[43] | Bull J M, Scrutton R A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere [J]. Nature, 1990, 344(6269): 855-858. doi: 10.1038/344855a0 |
[44] | Bull J M, Scrutton R A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance [J]. Journal of the Geological Society, 1992, 149(6): 955-966. doi: 10.1144/gsjgs.149.6.0955 |
[45] | Chamot-Rooke N, Jestin F, de Voogd B. Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile [J]. Geology, 1993, 21(11): 1043-1046. doi: 10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2 |
[46] | Royer J Y, Sandwell D T. Evolution of the eastern Indian Ocean since the late cretaceous: constraints from Geosat altimetry [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13755-13782. doi: 10.1029/JB094iB10p13755 |
[47] | van Orman J, Cochran J R, Weissel J K, et al. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean [J]. Earth and Planetary Science Letters, 1995, 133(1-2): 35-46. doi: 10.1016/0012-821X(95)00061-G |
[48] | Betzler C, Eberli G P, Lüdmann T, et al. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean) [J]. Progress in Earth and Planetary Science, 2018, 5: 5. doi: 10.1186/s40645-018-0165-x |
[49] | Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005 |
[50] | Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies [J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002 |
[51] | Zhang Y G, Pagani M, Liu Z H. A 12-Million-Year temperature history of the tropical Pacific Ocean [J]. Science, 2014, 344(6179): 84-87. |
[52] | 翦知湣, 金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3):221-227 doi: 10.3321/j.issn:1001-8166.2008.03.001 JIAN Zhimin, JIN Haiyan. Ocean carbon cycle and tropical forcing of climate evolution [J]. Advances in Earth Science, 2008, 23(3): 221-227. doi: 10.3321/j.issn:1001-8166.2008.03.001 |
[53] | Young A, Flament N, Maloney K, et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era [J]. Geoscience Frontiers, 2019, 10(3): 989-1013. doi: 10.1016/j.gsf.2018.05.011 |
[54] | Homrighausen S, Hoernle K, Hauff F, et al. Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics [J]. Earth-Science Reviews, 2018, 182: 85-101. doi: 10.1016/j.earscirev.2018.04.009 |
[55] | Zhang Z, Li S Z, Suo Y H, et al. Formation mechanism of the global Dupal isotope anomaly [J]. Geological Journal, 2016, 51(S1): 644-651. |
[56] | Becker T W, Boschi L. A comparison of tomographic and geodynamic mantle models [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 2001GC000168. |
[57] | Burke K, Torsvik T H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle [J]. Earth and Planetary Science Letters, 2004, 227(3-4): 531-538. doi: 10.1016/j.jpgl.2004.09.015 |
[58] | Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the earth’s mantle [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 295-308. doi: 10.1016/S0012-821X(02)01048-8 |
[59] | Burke K, Steinberger B, Torsvik T H, et al. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 49-60. doi: 10.1016/j.jpgl.2007.09.042 |
[60] | Conrad C P, Steinberger B, Torsvik T H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics [J]. Nature, 2013, 498(7455): 479-482. doi: 10.1038/nature12203 |
[61] | Torsvik T H, Smethurst M A, Burke K, et al. Long term stability in deep mantle structure: evidence from the ~ 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP) [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 444-452. doi: 10.1016/j.jpgl.2007.12.004 |
[62] | Honza E, Fujioka K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous [J]. Tectonophysics, 2004, 384(1-4): 23-53. doi: 10.1016/j.tecto.2004.02.006 |
[63] | Liu B, Li S Z, Suo Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific [J]. Geological Journal, 2016, 51(S1): 416-428. |
[64] | Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma [J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002 |
[65] | Suo Y H, Li S Z, Zhao S J, et al. Continental margin basins in East Asia: tectonic implications of the meso-Cenozoic East China Sea pull-apart basins [J]. Geological Journal, 2015, 50(2): 139-156. doi: 10.1002/gj.2535 |
[66] | Suo Y H, Li S Z, Yu S, et al. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin [J]. Journal of Asian Earth Sciences, 2014, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019 |
[67] | Müller R D, Sdrolias M, Gaina C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics [J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540 |
[68] | Replumaz A, Capitanio F A, Guillot S, et al. The coupling of Indian subduction and Asian continental tectonics [J]. Gondwana Research, 2014, 26(2): 608-626. doi: 10.1016/j.gr.2014.04.003 |
[69] | Zahirovic S, Matthews K J, Flament N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic [J]. Earth-Science Reviews, 2016, 162: 293-337. doi: 10.1016/j.earscirev.2016.09.005 |
[70] | Zahirovic S, Müller R D, Seton M, et al. Tectonic speed limits from plate kinematic reconstructions [J]. Earth and Planetary Science Letters, 2015, 418: 40-52. doi: 10.1016/j.jpgl.2015.02.037 |
[71] | Gibbons A D, Zahirovic S, Müller R D, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys [J]. Gondwana Research, 2015, 28(2): 451-492. doi: 10.1016/j.gr.2015.01.001 |
[72] | 刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4):824-838 LIU Yiming, LI Sanzhong, YU Shengyao, et al. The Mesozoic collage and orogeny process of micro-blocks in Bangong-Nujiang suture zone, Tibetan Plateau [J]. Geotectonica et Metallogenia, 2019, 43(4): 824-838. |
[73] | 周洁, 李三忠, 索艳慧, 等. 碰生型微地块的分类及其形成机制[J]. 大地构造与成矿学, 2019, 43(4):795-823 ZHOU Jie, LI Sanzhong, SUO Yanhui, et al. Type and genetic mechanism of collision-derived micro-blocks [J]. Geotectonica et Metallogenia, 2019, 43(4): 795-823. |
[74] | 姜素华, 张雯, 李三忠, 等. 西北太平洋洋陆过渡带新生代盆地构造演化与油气分布特征[J]. 大地构造与成矿学, 2019, 43(4):839-857 JIANG Suhua, ZHANG Wen, LI Sanzhong, et al. Cenozoic oil-gas distribution and tectonic evolution of the basins in the northwest pacific continent-ocean connection zone [J]. Geotectonica et Metallogenia, 2019, 43(4): 839-857. |
[75] | Li S Z, Santosh M, Zhao G C, et al. Intracontinental deformation in a frontier of super-convergence: a perspective on the tectonic milieu of the South China Block [J]. Journal of Asian Earth Sciences, 2012, 49: 313-329. doi: 10.1016/j.jseaes.2011.07.026 |
[76] | Li S Z, Zhao S J, Liu X, et al. Closure of the proto-Tethys ocean and early Paleozoic amalgamation of microcontinental blocks in East Asia [J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011 |
[77] | Anderson D L. New Theory of the Earth[M]. New York: Cambridge University Press, 2007: 1-384. |
[78] | 刘金平, 李三忠, 索艳慧, 等. 残生微洋块: 俯冲消减系统下盘的复杂演化[J]. 大地构造与成矿学, 2019, 43(4):762-778 LIU Jinping, LI Sanzhong, SUO Yanhui, et al. Subduction-derived oceanic micro-block: complex evolution of footwall in subduction system [J]. Geotectonica et Metallogenia, 2019, 43(4): 762-778. |
[79] | 孟繁, 李三忠, 索艳慧, 等. 跃生型微地块: 离散型板块边界的复杂演化[J]. 大地构造与成矿学, 2019, 43(4):644-664 MENG Fan, LI Sanzhong, SUO Yanhui, et al. Ridge jumping-derived micro-blocks: unravelling a complex evolutionary process for the divergent plate boundaries [J]. Geotectonica et Metallogenia, 2019, 43(4): 644-664. |
[80] | 牟墩玲, 李三忠, 索艳慧, 等. 裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示[J]. 大地构造与成矿学, 2019, 43(4):665-677 MU Dunling, LI Sanzhong, SUO Yanhui, et al. Tectonic and Geodynamic mechanism of back-arc-rifting derived micro-blocks: insights from Back-arc spreading in the West Pacific [J]. Geotectonica et Metallogenia, 2019, 43(4): 665-677. |
[81] | 汪刚, 李三忠, 姜素华, 等. 增生型微地块的成因模式及演化[J]. 大地构造与成矿学, 2019, 43(4):745-761 WANG Gang, LI Sanzhong, JIANG Suhua, et al. Formation mechanisms and evolution of accretion-derived micro-blocks [J]. Geotectonica et Metallogenia, 2019, 43(4): 745-761. |
[82] | 赵林涛, 李三忠, 索艳慧, 等. 延生微地块: 洋脊增生系统的复杂过程[J]. 大地构造与成矿学, 2019, 43(4):715-729 ZHAO Lintao, LI Sanzhong, SUO Yanhui, et al. Propagation-derived micro-blocks: Complex evolution of mid-ocean ridge accretion system [J]. Geotectonica et Metallogenia, 2019, 43(4): 715-729. |
[83] | 甄立冰, 李三忠, 郭玲莉, 等. 延生型微板块成因机制模拟研究进展[J]. 大地构造与成矿学, 2019, 43(4):730-744 ZHEN Libing, LI Sanzhong, GUO Lingli, et al. A review of the research progress on the genetic mechanism of the propagation-derived microplate [J]. Geotectonica et Metallogenia, 2019, 43(4): 730-744. |
[84] | 王光增, 李三忠, 索艳慧, 等. 转换型微板块类型、成因及其大地构造启示[J]. 大地构造与成矿学, 2019, 43(4):700-715 WANG Guangzeng, LI Sanzhong, SUO Yanhui, et al. Transform-derived microplates: classification, mechanism and tectonic significance [J]. Geotectonica et Metallogenia, 2019, 43(4): 700-715. |
[85] | Madrigal P, Gazel E, Flores K E, et al. Record of massive upwellings from the Pacific large low shear velocity province [J]. Nature Communication, 2016, 7: 13309. doi: 10.1038/ncomms13309 |
[86] | 李阳, 李三忠, 郭玲莉, 等. 拆离型微地块: 洋陆转换带和洋中脊变形机制[J/OL]. 大地构造与成矿学, 2019: 1-16. https://doi.org/10.16539/j.ddgzyckx.2019.04.011. LI Yang, LI Sanzhong, GUO Lingli, et al. Detachment-derived Micro-blocks: new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge[J/OL]. Geotectonica et Metallogenia, 2019: 1-16. https://doi.org/10.16539/j.ddgzyckx.2019.04.011. |
[87] | 李园洁, 李三忠, 姜兆霞, 等. 海洋磁异常及其动力学[J/OL]. 大地构造与成矿学, 2019: 1-22. https://doi.org/10.16539/j.ddgzyckx.2019.04.005. LI Yuanjie, LI Sanzhong, JIANG Zhaoxia, et al. Marine magnetic anomalies and its dynamics[J/OL]. Geotectonica et Metallogenia, 2019: 1-22. https://doi.org/10.16539/j.ddgzyckx.2019.04.005. |
[88] | Gurnis M. Large-scale mantle convection and the aggregation and dispersal of supercontinents [J]. Nature, 1988, 332(6166): 695-699. doi: 10.1038/332695a0 |
[89] | Zhong S J, Zhang N, Li Z X, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 551-564. doi: 10.1016/j.jpgl.2007.07.049 |
[90] | Royer D L, Berner R L, Montañez I P, et al. CO2 as a primary driver of Phanerozoic climate [J]. GSA Today, 2004, 14: 4-10. |
[91] | Shaviv N J, Veizer J. Celestial driver of Phanerozoic climate? [J]. GSA Today, 2003, 13(7): 4-10. doi: 10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2 |
[92] | Larson R L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume [J]. Geology, 1991, 19(6): 547-550. doi: 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2 |
[93] | Bice K L, Norris R D. Possible atmospheric CO2 extremes of the middle cretaceous (late Albian-Turonian) [J]. Paleoceanography, 2002, 17(4): 22-1. |
[94] | Selby D, Mutterlose J, Condon D J. U-Pb and Re-Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: implications for timescale calibration, osmium isotope seawater composition and Re-Os systematics in organic-rich sediments [J]. Chemical Geology, 2009, 265(3-4): 394-409. doi: 10.1016/j.chemgeo.2009.05.005 |
[95] | Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change [J]. Science, 2005, 310(5752): 1293-1298. doi: 10.1126/science.1116412 |
[96] | Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 344-361. doi: 10.1016/j.palaeo.2005.05.011 |
[97] | Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: causes and consequences [J]. Geologie en Mijnbouw, 1976, 55(3-4): 179-184. |
[98] | Jenkyns H C. Geochemistry of oceanic anoxic events [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q030004. |
[99] | Irving E, North F K, Couillard R. Oil, climate, and tectonics [J]. Canadian Journal of Earth Sciences, 1974, 11(1): 1-17. doi: 10.1139/e74-001 |
[100] | Friedrich O, Norris R D, Erbacher J. Evolution of Middle to Late Cretaceous oceans-A 55 m.y. record of Earth’s temperature and carbon cycle [J]. Geology, 2012, 40(2): 107-110. doi: 10.1130/G32701.1 |
[101] | Norris R D, Bice K L, Magno E A, et al. Jiggling the tropical thermostat in the Cretaceous hothouse [J]. Geology, 2002, 30(4): 299-302. doi: 10.1130/0091-7613(2002)030<0299:JTTTIT>2.0.CO;2 |
[102] | Roth P H. Mesozoic palaeoceanography of the North Atlantic and Tethys oceans[M]//Summerhayes C P, Shackleton N J. North Atlantic Palaeoceanography. Geological Society, London, Special Publication, 1986, 21(1): 299-320. |
[103] | Voigt S, Jung C, Friedrich O, et al. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse [J]. Earth and Planetary Science Letters, 2013, 369-370: 169-177. doi: 10.1016/j.jpgl.2013.03.019 |
[104] | Bohaty S M, Zachos J C. Significant southern ocean warming event in the late middle Eocene [J]. Geology, 2003, 31(11): 1017-1020. doi: 10.1130/G19800.1 |
[105] | Kennett J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography [J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843 |
[106] | Shipboard Scientific Party. Leg 189 summary[M]//Exon N F, Kennett J P, Malone M J, et al. Proceedings of the Ocean Drilling Program. College Station, TX: Intial Reports, 2001: 1-98. |
[107] | Gernigon L, Franke D, Geoffroy L, et al. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea [J]. Earth-Science Reviews, 2019. doi: 10.1016/j.earscirev.2019.04.011 |
[108] | Veevers J J. Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permian Pangean icehouse alternates with Cretaceous dispersed-continents greenhouse [J]. Sedimentary Geology, 1990, 68(1-2): 1-16. doi: 10.1016/0037-0738(90)90116-B |
[109] | Veevers J J. Pangea: evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments[M]//Klein G D. Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. McLean, VA: Geological Society of America, 1994, 288: 12-23. |
[110] | Holmes A. The problem of geological time. Third part: the convergence of evidence [J]. Scientia, 1928, 22(43): 7. |
[111] | Fischer A G. The two Phanerozoic supercycles[M]//Berggren W A, van Couvering J A. Catastrophes and Earth History. Princeton, NJ: Princeton University Press, 1984: 129-150. |
[112] | Anderson D L. Hotspots, polar wander, Mesozoic convection and the geoid [J]. Nature, 1982, 297(5865): 391-393. doi: 10.1038/297391a0 |
[113] | Collins W J. Slab pull, mantle convection, and Pangaean assembly and dispersal [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 225-237. doi: 10.1016/S0012-821X(02)01043-9 |
[114] | Worsley T R, Nance D, Moody J B. Global tectonics and eustasy for the past 2 billion years [J]. Marine Geology, 1984, 58(3-4): 373-400. doi: 10.1016/0025-3227(84)90209-3 |
[115] | Humler E, Besse J. A correlation between mid-ocean-ridge basalt chemistry and distance to continents [J]. Nature, 2002, 419(6907): 607-609. doi: 10.1038/nature01052 |
[116] | Hallam A. Phanerozoic Sea-Level Changes[M]. New York: Columbia University Press, 1992. |
[117] | Audley-Charles M G, Hallam A. Introduction[M]//Audley C M G, Hallam A. Gondwana and Tethys. Geological Society, London, Special Publications, 1988, 37: 1-4. |
[118] | Veevers J J. Pan-African is pan-Gondwanaland: oblique convergence drives rotation during 650-500 Ma assembly [J]. Geology, 2003, 31(6): 501-504. doi: 10.1130/0091-7613(2003)031<0501:PIPOCD>2.0.CO;2 |
[119] | 汪品先, 田军, 黄恩清. 全球季风与大洋钻探[J]. 中国科学: 地球科学, 2018, 48(7):960-963 WANG Pinxian, TIAN Jun, HUANG Enqing. Global monsoon and ocean drilling (in Chinese) [J]. Scientia Sinica Terrae, 2018, 48(7): 960-963. |
[120] | Wang P X, Tian J, Cheng X R, et al. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event [J]. Geology, 2003, 31(3): 239-242. doi: 10.1130/0091-7613(2003)031<0239:CRCPMI>2.0.CO;2 |
[121] | Wang P X, Tian J, Lourens L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 319-330. doi: 10.1016/j.jpgl.2009.12.028 |
[122] | Broecker W S, Peteet D M, Rind D. Does the ocean-atmosphere system have more than one stable mode of operation? [J]. Nature, 1985, 315(6014): 21-26. |
[123] | Zeebe R E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification [J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 141-165. doi: 10.1146/annurev-earth-042711-105521 |
Tripole of surface earth system, i.e. the Arctic, Antarctic and Qinghai-Tibet Plateau
Variations in CO2 content and δ18O since 40 Ma(After references [6] and [8])
SMEAN shear wave velocity anomalies near the core–mantle boundary (2 800 km depth) (after references [56, 57])
Association of plate tectonic net characteristics with those of underlaying mantle flow (after reference [60])
Mantle temperature anomalies at 2 677 km in depth predicted by mantle flow models driven by Case 1 (a-c) and Case 2 (d-f) (after reference [53])
Plate reconstructions of plate kinematics and large igneous provinces for Mesozoic circum-Pacific and Paleo-Pacific plates(after reference [85])
Five-stage evolution model of single supercontinent such as Pangea and single super-ocean such as Panthalassa or dispersed continents and oceans (after reference [108])
The variations in sea level, granite, ice age, seawater Sr and C isotopes during re-organization of continents and oceans since 850 Ma