2020 Vol. 40, No. 6
Article Contents

XU Dailu, YIN Yong, SHI Lianqiang, LIN Wenrong, WANG Aihua, ZHENG Yujun. Sedimentary facies and environmental evolution of the Yangtze shoal, eastern China Sea shelf since Late Pleistocene: Evidence from core YZ05[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 22-38. doi: 10.16562/j.cnki.0256-1492.2019050501
Citation: XU Dailu, YIN Yong, SHI Lianqiang, LIN Wenrong, WANG Aihua, ZHENG Yujun. Sedimentary facies and environmental evolution of the Yangtze shoal, eastern China Sea shelf since Late Pleistocene: Evidence from core YZ05[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 22-38. doi: 10.16562/j.cnki.0256-1492.2019050501

Sedimentary facies and environmental evolution of the Yangtze shoal, eastern China Sea shelf since Late Pleistocene: Evidence from core YZ05

  • A 80 m long core, i.e. the Core YZ05, taking from the Yangtze shoal at the inner shelf of Eastern China Sea, is carefully studied by this paper. Although some preliminary results have been published before, it is still necessary to reexamine the interpretation concerning sedimentary facies and the previous models with the newly acquired information. Based on color, grain size, sedimentary texture and structure, contact relationship and fossils, the Late Pleistocene and Holocene succession of the core YZ05 can be classified into ten environmentally significant facies, which include fluvial channel-point bar (F1), overbank (F2), muddy tidal flat (F3), estuary front (F4), tidal sandy ridge (F5), inter-ridge channel(F6), distributary channel bar (F7), distributary channel (F8), distal delta front (F9) and prodelta (F10). Through the analysis of facies association and facies sequences, with the support of Sr/Ba ratios, a retrogradational estuary sequence and a progradational detaic sequence are recognized, which are similar to the post glacial sequences in the Yangtze River delta. AMS14C and OSL dating suggest that the deposits penetrated by Hole YZ05 are younger than Late Pleistocene. Then the Yangtze Shoal is sourced from the Late Pleistocene deltaic deposits reworked by tidal current.

  • 加载中
  • [1] 龙海燕, 庄振业, 刘升发, 等. 扬子浅滩沙波底形活动性评估[J]. 海洋地质与第四纪地质, 2007, 27(6):17-24

    Google Scholar

    LONG Haiyan, ZHUANG Zhenye, LIU Shengfa, et al. Activity magnitude of the small-medium subaqueous dunes in the Yangtze Shoal [J]. Marine Geology & Quaternary Geology, 2007, 27(6): 17-24.

    Google Scholar

    [2] 叶银灿, 庄振业, 来向华, 等. 东海扬子浅滩砂质底形研究[J]. 中国海洋大学学报, 2004, 34(6):1057-1062

    Google Scholar

    YE Yincan, ZHUANG Zhenye, LAI Xianghua, et al. A study of sandy bedforms on the Yangtze Shoal in the East China Sea [J]. Periodical of Ocean University of China, 2004, 34(6): 1057-1062.

    Google Scholar

    [3] 朱永其, 曾成开, 金长茂. 东海陆架地貌的初步研究[C]//东海研究文集, 北京: 海洋出版社, 1984: 82-93.

    Google Scholar

    ZHU Yongqi, ZENG Chengkai, JIN Changmao. Primary study on the physiognomy in East China Sea continental shelf[C]//Study Collection on the East China Sea. Beijing: China Ocean Press, 1984: 82-93.

    Google Scholar

    [4] 陈中原, 周长振, 杨文达, 等. 长江口外现代水下地貌与沉积[J]. 东海海洋, 1986, 4(2):32-41

    Google Scholar

    CHEN Zhongyuan, ZHOU Changzhen, YANG Wenda, et al. The Yangtze River estuary of modern underwater landform and sediment [J]. Donghai Marine Science, 1986, 4(2): 32-41.

    Google Scholar

    [5] 秦蕴珊. 东海地质[M]. 北京: 科学出版社, 1987: 188-192.

    Google Scholar

    QIN Yunshan. Geology of East China Sea[M]. Beijing: Science Press, 1987: 188-192.

    Google Scholar

    [6] 金翔龙. 东海海洋地质[M]. 北京: 海洋出版社, 1992.

    Google Scholar

    JIN Xianglong. Marine Geology of the East China Sea[M]. Beijing: Ocean Press, 1992.

    Google Scholar

    [7] 海洋图集编委会. 渤海 黄海 东海 海洋图集 地质 地球物理图集[M]. 北京: 海洋出版社, 1990.

    Google Scholar

    Editorial Board for Marine Atlas. Marine Atlas of Bohai Sea Yellow Sea East China Sea Geology and Geophysics[M]. Beijing: China Ocean Press, 1990.

    Google Scholar

    [8] 刘锡清. 中国陆架的残留沉积[J]. 海洋地质与第四纪地质, 1987, 7(1):3-16

    Google Scholar

    LIU Xiqing. Relict sediments in China continental shelf [J]. Marine Geology & Quaternary Geology, 1987, 7(1): 3-16.

    Google Scholar

    [9] 刘振夏. 对东海扬子浅滩成因的再认识[J]. 海洋学报, 1996, 18(2):85-92

    Google Scholar

    LIU Zhenxia. Re-recognition of the cause of the Yangtze shoal in the East China Sea [J]. Acta Oceanologica Sinica, 1996, 18(2): 85-92.

    Google Scholar

    [10] Dalrymple R W, Baker E K, Harris P T, et al. Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea)[M]//Sidi F H, Nummedal D, Imbert P, et al. Tropical Deltas of Southeast Asia: Sedimentology, Stratigraphy, and Petroleum Geology. SEPM, 2003: 147-173.

    Google Scholar

    [11] Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression [J]. Marine Geology, 2001, 177(3-4): 331-351. doi: 10.1016/S0025-3227(01)00165-7

    CrossRef Google Scholar

    [12] Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China [J]. Geomorphology, 2001, 41(2-3): 233-248. doi: 10.1016/S0169-555X(01)00119-2

    CrossRef Google Scholar

    [13] Zhang X, Lin C M, Dalrymple R W, et al. Facies architecture and depositional model of a macrotidal incised-valley succession (Qiantang River estuary, eastern China), and differences from other macrotidal systems [J]. GSA Bulletin, 2014, 126(3-4): 499-522. doi: 10.1130/B30835.1

    CrossRef Google Scholar

    [14] 侯志民. 扬子浅滩成因探讨[D]. 青岛: 中国海洋大学, 2010.

    Google Scholar

    HOU Zhimin. Discussion on the Genesis of the Yangtze Shoal[D]. Qingdao: Ocean University of China, 2010.

    Google Scholar

    [15] 金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展, 2003, 21(1):99-106 doi: 10.3969/j.issn.1671-6647.2003.01.013

    CrossRef Google Scholar

    JIN Bingfu, LIN Zhenhong, JI Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance [J]. Advances in Marine Science, 2003, 21(1): 99-106. doi: 10.3969/j.issn.1671-6647.2003.01.013

    CrossRef Google Scholar

    [16] 王爱华. 不同形态锶钡比的沉积环境判别效果比较[J]. 沉积学报, 1996, 14(4):168-173

    Google Scholar

    WANG Aihua. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms [J]. Acta Sedimentologica Sinica, 1996, 14(4): 168-173.

    Google Scholar

    [17] 林文荣, 殷勇, 于革, 等. 扬子浅滩MIS6阶段以来沉积地层及环境演变[J]. 南京大学学报: 自然科学版, 2017, 53(5):912-925

    Google Scholar

    LIN Wenrong, YIN Yong, YU Ge, et al. Characteristics of sedimentary strata and environmental evolution of the Yangtze Shoal since Marine Isotope Stage 6 [J]. Journal of Nanjing University: Natural Sciences, 2017, 53(5): 912-925.

    Google Scholar

    [18] 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008: 27-71.

    Google Scholar

    LI Jiabiao. Regional Geology of East China Sea[M]. Beijing: China Ocean Press, 2008: 27-71.

    Google Scholar

    [19] 杨文达, 崔征科, 张异彪. 东海地质与矿产[M]. 北京: 海洋出版社, 2010: 65-72.

    Google Scholar

    YANG Wenda, CUI Zhengke, ZHANG Yibiao. East China Sea Geology and Mineral Resources[M]. Beijing: China Ocean Press, 2010: 65-72.

    Google Scholar

    [20] 邵和宾. 长江口及其邻近海域秋季悬浮体组成、分布及其影响因素研究[D]. 青岛: 中国海洋大学, 2012.

    Google Scholar

    SHAO Hebin. Research on composition, distribution and influencing factors of suspended matters in the Yangtze River estuary in fall[D]. Qingdao: Ocean University of China, 2012.

    Google Scholar

    [21] Liu Z X. Yangtze Shoal: a modern tidal sand sheet in the northwestern part of the East China Sea [J]. Marine Geology, 1997, 137(3-4): 321-330. doi: 10.1016/S0025-3227(96)00026-6

    CrossRef Google Scholar

    [22] 刘振夏, 夏东兴, 王揆洋. 中国陆架潮流沉积体系和模式[J]. 海洋与湖沼, 1998, 29(2):141-147 doi: 10.3321/j.issn:0029-814X.1998.02.006

    CrossRef Google Scholar

    LIU Zhenxia, XIA Dongxing, WANG Kuiyang. Tidal depositional systems and patterns of China’s continental shelf [J]. Oceanologia et Limnologia Sinica, 1998, 29(2): 141-147. doi: 10.3321/j.issn:0029-814X.1998.02.006

    CrossRef Google Scholar

    [23] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    CrossRef Google Scholar

    [24] Droser M L, Bottjer D J. Ichnofabric of sandstones deposited in high-energy nearshore environments: measurement and utilization [J]. Palaios, 1989, 4(6): 598-604.

    Google Scholar

    [25] Wang A H, Liu J K, Zhang F, et al. Selective extraction of sedimentogenic Strontium and Barium in terrigenous clastic sediments: US, 10151018B2[P]. 2018-12-11.

    Google Scholar

    [26] Pemberton S G, MacEachern J A, Frey R W. Trace fossil facies models: environmental and allostratigraphic significance[M]//Walker R G, James N P. Facies Models, Response to Sea Level Change. St. John’s, Newfoundland: Geological Association of Canada, 1992: 47-72.

    Google Scholar

    [27] Zhang X, Dalrymple R W, Lin C M. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide-dominated paleo-Changjiang (Yangtze River) delta [J]. GSA Bulletin, 2018, 130(3-4): 455-483. doi: 10.1130/B31663.1

    CrossRef Google Scholar

    [28] Allen G P, Posamentier H W. Facies and stratal patterns in incised valley complexes: examples from the Recent Gironde Estuary (France) and the Cretaceous Viking Formation (Canada) (abstract)[C]//American Association of Petroleum Geologists Annual Convention, Dallas, Texas, 7-10 April, Abstracts with Programs, 1991: 70.

    Google Scholar

    [29] Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884

    CrossRef Google Scholar

    [30] Hori K, Saito Y, Zhao Q H, et al. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China [J]. Sedimentary Geology, 2002, 146(3-4): 249-264. doi: 10.1016/S0037-0738(01)00122-1

    CrossRef Google Scholar

    [31] Hori K, Saito Y, Zhao Q, et al. Control of incised-valley fill stacking patterns by accelerated and decelerated sea-level rise: the Changjiang example during the last deglaciation [J]. Geo-Marine Letters, 2002, 22(3): 127-132. doi: 10.1007/s00367-002-0105-y

    CrossRef Google Scholar

    [32] Wang Z H, Saito Y, Hori K, et al. Yangtze offshore, China: highly laminated sediments from the transition zone between subaqueous delta and the continental shelf [J]. Estuarine, Coastal and Shelf Science, 2005, 62(1-2): 161-168. doi: 10.1016/j.ecss.2004.08.012

    CrossRef Google Scholar

    [33] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007

    CrossRef Google Scholar

    [34] 刘宝君. 沉积岩石学[M]. 北京: 地质出版社, 1980.

    Google Scholar

    LIU Baojun. Sedimentary Petrology[M]. Beijing: Geological Publishing House, 1980.

    Google Scholar

    [35] 刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984.

    Google Scholar

    LIU Yingjun. Element Geochemistry[M]. Beijing: Science Press, 1984.

    Google Scholar

    [36] Ichaso A A, Dalrymple R W. Eustatic, tectonic and climatic controls on an early syn-rift mixed-energy delta, Tilje Formation (Early Jurassic, Smørbukk Field, offshore mid-Norway)[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014, 46: 339-388.

    Google Scholar

    [37] Ichaso A A, Dalrymple R W, Martinius A W. Basin analysis and sequence stratigraphy of the synrift Tilje Formation (Lower Jurassic), Halten terrace giant oil and gas fields, offshore mid-Norway [J]. AAPG Bulletin, 2016, 100(8): 1329-1375. doi: 10.1306/02251614081

    CrossRef Google Scholar

    [38] Wells J T. Tide-dominated estuaries and tidal rivers [J]. Developments in Sedimentology, 1995, 53: 179-205. doi: 10.1016/S0070-4571(05)80026-3

    CrossRef Google Scholar

    [39] Sternberg R W, Cacchione D A, Paulso B, et al. Observations of sediment transport on the Amazon subaqueous delta [J]. Continental Shelf Research, 1996, 16(5-6): 697-715. doi: 10.1016/0278-4343(95)00045-3

    CrossRef Google Scholar

    [40] Dalrymple R W, Choi K. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation [J]. Earth-Science Reviews, 2007, 81(3-4): 135-174. doi: 10.1016/j.earscirev.2006.10.002

    CrossRef Google Scholar

    [41] Feldman H, Demko T. Recognition and prediction of petroleum reservoirs in the fluvial/tidal transition [J]. Developments in Sedimentology, 2015, 68(14): 483-528.

    Google Scholar

    [42] Uehara K, Saito Y, Hori K. Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model [J]. Marine Geology, 2002, 183(1-4): 179-192. doi: 10.1016/S0025-3227(01)00255-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2708) PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint