2019 Vol. 39, No. 4
Article Contents

LU Jingsheng, XIONG Youming, LI Dongliang, LIANG Deqing, JIN Guangrong, HE Yong, SHEN Xiaodong. Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301
Citation: LU Jingsheng, XIONG Youming, LI Dongliang, LIANG Deqing, JIN Guangrong, HE Yong, SHEN Xiaodong. Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301

Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production

More Information
  • Nature gas hydrate mainly exists in non-diagenetic strata, and sand production and reservoir subsidence often happen during mining, which restrict the safe and sustainable production of gas hydrate. In order to study the relationship of sand production and reservoir subsidence with temperature, pressure, gas production, water production of hydrate exploitation, simulation tests under different conditions were conducted with a self-developed device for sand production and sand control. It is observed that the sand ratio and grain size of water gradually increased in the first two production stages; For fine-grained sand reservoir, increasing the gas production rates will enhance the sand carrying ability of water, so that the sand production risk increases. At the same time, high-gas-production will accelerate the temperature decrease and lead to the formation of ice-phase, and/or ice blocking. The reservoir subsidence during hydrate exploitation is closely related to hydrate content in the reservoir. However, the influence of gas production rates and depressurization rates on reservoir subsidence are related to gas production mode. The stimulation operation in the mid-late stages of hydrate exploitation will increase sand production risk and subsidence. We further discussed the sand production taking the first marine hydrate mining case in Japan in 2013 and proposed the concept of sand prevention according to grades and stages.

  • 加载中
  • [1] Sloan E D, Koh C. Clathrate Hydrates of Natural Gases, 3rd Edition[M]. Boca Raton: Taylor & Francis Group, Chemical Rubber Company Press, 2007:1-10.

    Google Scholar

    [2] 江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42(3):345-359.

    Google Scholar

    JIANG Zemin. Reflections on energy issues in China[J]. Journal of Shanghai Jiao Tong University, 2008, 42(3):345-359.

    Google Scholar

    [3] 邹才能, 杨智, 何东博, 等.常规-非常规天然气理论、技术及前景[J].石油勘探与开发, 2018, 45(4):1-13.

    Google Scholar

    ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 1-13.

    Google Scholar

    [4] Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 2096-5192(1):5-16.

    Google Scholar

    [5] 吴能友, 黄丽, 胡高伟, 等.海域天然气水合物开采的地质控制因素和科学挑战[J].海洋地质与第四纪地质, 2017, 37(5):1-11.

    Google Scholar

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation[J]. Marine Geology & Quaternary Geology, 2017, 37(5):1-11.

    Google Scholar

    [6] 周守为, 陈伟, 李清平, 等.深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J].中国海上油气, 2017, 29(4):1-8.

    Google Scholar

    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil Gas, 2017, 29(4):1-8.

    Google Scholar

    [7] 刘昌岭, 李彦龙, 孙建业, 等.天然气水合物试采:从实验模拟到场地实施[J].海洋地质与第四纪地质, 2017, 37(5):12-26.

    Google Scholar

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5):12-26.

    Google Scholar

    [8] Collett T, Bahk J, Baker R, et al. Methane hydrates in nature—current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2014, 60(2):319-329.

    Google Scholar

    [9] 宁伏龙.天然气水合物地层井壁稳定性研究[D].中国地质大学, 2005.

    Google Scholar

    NING Fulong. Research on wellbore stability in gas hydrate formation[D].China University of Geoscience, 2005.

    Google Scholar

    [10] 李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7):36-43.

    Google Scholar

    LI Yanlong, LIU Leilei, LIU Changling, et al. Sand prediction and sand- control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7):36-43.

    Google Scholar

    [11] 李彦龙, 胡高伟, 刘昌岭, 等.天然气水合物开采井防砂充填层砾石尺寸设计方法[J].石油勘探与开发, 2017, 44(6):961-966.

    Google Scholar

    LI Yanlong, HU Gaowei, LIU Changling, et al. Gravel sizing method for marine hydrate production test wells[J]. Petroleum Exploration and Development, 2017, 44(6): 1-6.

    Google Scholar

    [12] 卢静生, 李栋梁, 何勇, 等.天然气水合物开采过程中出砂研究现状[J].新能源进展, 2017, 5(5):394-402. doi: 10.3969/j.issn.2095-560X.2017.05.011

    CrossRef Google Scholar

    LU Jingsheng, LI Dongliang, HE Yong, et al. Research status of sand production during the gas hydrate exploitation process[J]. Advances in New and Renewable Energy, 2017, 5(5):394-402. doi: 10.3969/j.issn.2095-560X.2017.05.011

    CrossRef Google Scholar

    [13] 张卫东, 王瑞和, 任韶然, 等.由麦索雅哈水合物气田的开发谈水合物的开采[J].石油钻探技术, 2007, 35(4):94-96. doi: 10.3969/j.issn.1001-0890.2007.04.029

    CrossRef Google Scholar

    ZHANG Weidong, WANG Ruihe, REN Shaoran, et al. Gas hydrate development based on Messoyakha hydrate gas field[J]. Petroleum Drilling Technique, 2007, 35(4):94-96. doi: 10.3969/j.issn.1001-0890.2007.04.029

    CrossRef Google Scholar

    [14] Grover T, Moridis G, Holditch S A. Analysis of reservoir performance of Messoyakha gas hydrate field[C]// Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada: The International Society of Offshore and Polar Engineers (ISOPE).2008: 49-56

    Google Scholar

    [15] Haberer R M, Mangelsdorf K, Wilkes H, et al. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)[J]. Organic Geochemistry, 2006, 37(5):519-538. doi: 10.1016/j.orggeochem.2006.01.004

    CrossRef Google Scholar

    [16] Yamamoto K, Dallimore S. Aurora-JOGMEC-NRCan Mallik 2006-2008 Gas Hydrate Research Project progress[J].Fire in the Ice, 2008, 8(3):1-5.

    Google Scholar

    [17] Oyama H, Nagao J, Suzuki K, et al. Experimental analysis of sand production from methane hydrate bearing sediments applying depressurization method[J]. Journal of MMIJ, 2010, 126(8/9):497-502. doi: 10.2473/journalofmmij.126.497

    CrossRef Google Scholar

    [18] Ayling I, Matsuzawa M, Wingstrom L, et al. A completion system application for the world'sfirst marine hydrate production test[C]// Offshore Technology Conference, Houston, Texas, USA: Offshore Technology Conference, 2014.

    Google Scholar

    [19] Terumichi I, Matsuzawa M, Terao Y, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C] // Offshore Technology Conference, Houston, Texas, USA: Offshore Technology Conference, 2014.

    Google Scholar

    [20] Konno Y, Fujii T, Sato A, et al. Key findings of the world's first offshore methane hydrate production test off the coast of Japan: Toward future commercial production[J]. Energy & Fuels, 2017, 31(3):2607-2616.

    Google Scholar

    [21] 付强, 周守为, 李清平.天然气水合物资源勘探与试采技术研究现状与发展战略[J].中国工程科学, 2015, 17(9):123-132. doi: 10.3969/j.issn.1009-1742.2015.09.020

    CrossRef Google Scholar

    FU Qiang, ZHOU Shouwei, LI Qingping. Natural gas hydrate exploration and production technology research status and development strategy[J]. Engineering Science, 2015, 17 (9):123-132. doi: 10.3969/j.issn.1009-1742.2015.09.020

    CrossRef Google Scholar

    [22] 许帆婷.天然气水合物开发要探求更经济途径——访北京大学工学院教授、我国天然气水合物首次试采工程首席科学家卢海龙[J].中国石化, 2018 (5):55-58. doi: 10.3969/j.issn.1005-457X.2018.05.015

    CrossRef Google Scholar

    XU Fanting. Gas hydrate development need to explore more economical way-Interviewing Professor Lu Hailong, from College of Engineering in Peking University, the Chief scientist of the China's first offshore natural gas hydrate trial production engineering[J]. Sinopec, 2018 (5): 55-58. doi: 10.3969/j.issn.1005-457X.2018.05.015

    CrossRef Google Scholar

    [23] Boswell R. Is gas hydrate energy within reach?[J]. Science, 2009, 325(5943):957-958. doi: 10.1126/science.1175074

    CrossRef Google Scholar

    [24] Boswell R, Collett T. The gas hydrates resource pyramid[J]. Fire In the Ice, 2006, 6(3):5-7.

    Google Scholar

    [25] 苏明, 匡增桂, 乔少华, 等.海域天然气水合物钻探研究进展及启示(I):站位选择[J].新能源进展, 2015, 3(2):116-130. doi: 10.3969/j.issn.2095-560X.2015.02.007

    CrossRef Google Scholar

    SU Ming, KUANG Zenggui, QIAO Shaohua, et al, The progresses and revelations of marine gas hydrate explorations (I):Purposes and selection evidences of the hydrate drilling sites[J]. Advances in New and Renewable Energy, 2015, 3(2):116-130. doi: 10.3969/j.issn.2095-560X.2015.02.007

    CrossRef Google Scholar

    [26] 乔少华, 苏明, 杨睿, 等.海域天然气水合物钻探研究进展及启示:储集层特征[J].新能源进展, 2015, 3(5):357-366. doi: 10.3969/j.issn.2095-560X.2015.05.007

    CrossRef Google Scholar

    QIAO Shaohua, SU Ming, YANG Rui, et al. The progress and revelations of marine gas hydrate explorations: Reservoir characteristics[J]. Advances in New And Renewable Energy, 2015, 3(5):357-366. doi: 10.3969/j.issn.2095-560X.2015.05.007

    CrossRef Google Scholar

    [27] 戴金星, 倪云燕, 黄士鹏, 等.中国天然气水合物气的成因类型[J].石油勘探与开发, 2017, 44(6):837-848.

    Google Scholar

    DAI Jinxing, NI Yunyan, HUANG Shipeng, et al. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Development, 2017, 44(6): 837-848.

    Google Scholar

    [28] Jung J W, Jang J, Santamarina J C, et al. Gas production from hydrate-bearing sediments: The role of fine particles[J]. Energy & Fuels, 2012, 26(1):480-487.

    Google Scholar

    [29] Suzuki S, Kuwano R. Evaluation on stability of sand control in mining methane hydrate[J]. Seisan Kenkyu, 2016, 68(4):311-314.

    Google Scholar

    [30] Murphy A, Soga K, Yamamoto K. A laboratory investigation of sand production simulating the 2013 Daini- Atsumi Knoll gas hydrate production trial using a high pressure plane strain testing apparatus[C]// 9th International Conferences on Gas Hydrate, Denver, USA: 9th International Conferences on Gas Hydrate, 2017.

    Google Scholar

    [31] Lee J, Ahn T, Lee J Y, et al. Laboratory test to evaluate the performance of sand control screens during hydrate dissociation process by depressurization[C]//Tenth (2013) ISOPE Ocean Mining and Gas Hydrates Symposium, Szczecin, Poland: The International Society of Offshore and Polar Engineers (ISOPE), 2013: 150-153.

    Google Scholar

    [32] Moridis G, Collett T S, Pooladi-darvish M, et al. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(1):76-112.

    Google Scholar

    [33] Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:303-316. doi: 10.1016/j.ijrmms.2016.04.009

    CrossRef Google Scholar

    [34] Uchida S, Klar A, Yamamoto K.Sand production modelling of the 2013 Nankai offshore gas production test[C]// 1st International Conference on Energy Geotechnics, 2016: 451-458.

    Google Scholar

    [35] Ning F, Sun J, Liu Z, et al. Prediction of sand production in gas recovery from the Shenhu hydrate reservoir by depressurization[C]// 9th International Conference on Gas Hydrate, Denver USA, 2017.

    Google Scholar

    [36] 刘浩伽, 李彦龙, 刘昌岭, 等.水合物分解区地层砂粒启动运移临界流速计算模型[J].海洋地质与第四纪地质, 2017, 37(5):166-173.

    Google Scholar

    LIU Haojia, LI Yanlong, LIU Changling, et al. Calculation model for critical velocity of sand movement in decomposed hydrate cemented sediment[J]. Marine Geology & Quaternary Geology, 2017, 37(5):166-173.

    Google Scholar

    [37] 公彬, 蒋宇静, 王刚, 等.南海天然气水合物开采海底沉降预测[J].山东科技大学学报:自然科学版, 2015, 34(5):61-68.

    Google Scholar

    GONG Bin, JIANG Yujing, WANG Gang, et al. Prediction of seabed settlement caused by natural gas hydrate exploitation in South China Sea[J]. Journal of Shandong University of Science and Technology (Natural Science), 2015, 34(5):61-68.

    Google Scholar

    [38] 万义钊, 吴能友, 胡高伟, 等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业, 2018, 38(4):117-128.

    Google Scholar

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4):117-128.

    Google Scholar

    [39] Jin G, Lei H, Xu T, et al. Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2018, 92:424-436. doi: 10.1016/j.marpetgeo.2017.11.007

    CrossRef Google Scholar

    [40] Lu J, Xiong Y, Li D, et al. Experimental investigation of characteristics of sand production in wellbore during hydrate exploitation by the depressurization method[J]. Energies, 2018, 11(7):1673. doi: 10.3390/en11071673

    CrossRef Google Scholar

    [41] 陆敬安, 杨胜雄, 吴能友, 等.南海神狐海域天然气水合物地球物理测井评价[J].现代地质, 2008, 22(3):447-451. doi: 10.3969/j.issn.1000-8527.2008.03.015

    CrossRef Google Scholar

    LU Jingan, YANG Shengxiong, WU Nengyou, et al. Well logging evaluation of gas hydrate in Shenhu area, South China Sea[J]. Geoscience, 2008, 22(3):447-451. doi: 10.3969/j.issn.1000-8527.2008.03.015

    CrossRef Google Scholar

    [42] 李刚, 李小森, 陈琦, 等.南海神狐海域天然气水合物开采数值模拟[J].化学学报, 2010, 68(11):1083-1092.

    Google Scholar

    LI Gang, LI Xiaosen, CHEN Qi, et al. Numerical simulation of gas production from gas hydrate zone in Shenhu area, South China Sea[J]. Acta Chimica Sinica, 2010, 68(11):1083-1092.

    Google Scholar

    [43] 李传亮.油藏工程原理[M].石油工业出版社, 2005.

    Google Scholar

    LI Chuanliang. Principle of Reservoir Engineering[M]. Petroleum Industry Press, 2005.

    Google Scholar

    [44] Wang Y, Feng J, Li X, et al. Experimental investigation on sediment deformation during gas hydrate decomposition for different hydrate reservoir types[J]. Energy Procedia, 2017, 142:4110-4116. doi: 10.1016/j.egypro.2017.12.333

    CrossRef Google Scholar

    [45] Han H, Wang Y, Li X, et al. Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus[J]. Fuel, 2016, 182:446-453. doi: 10.1016/j.fuel.2016.05.112

    CrossRef Google Scholar

    [46] Li D, Wu Q, Wang Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7):1819. doi: 10.3390/en11071819

    CrossRef Google Scholar

    [47] Murphy A J. Sediment heterogeneity and sand production in gas hydrate extraction- Daini-Atsumi Knoll, Nankai Trough, Japan[D]. University of Cambridge, 2017.

    Google Scholar

    [48] 马帅, 熊友明, 于东, 等.海上高产气田防砂挡砂精度设计研究[J].石油钻采工艺, 2013, 35(6):48-51.

    Google Scholar

    MA Shuai, XIONG Youming, YU Dong, et al. Research on precision design of sand control on high yield offshore gas field[J]. Oil Drilling & Production Technology, 2013, 35(6):48-51.

    Google Scholar

    [49] 熊友明, 徐家年, 冯胜利, 等.气田防砂效果评价方法与标准探索[J].天然气地球科学, 2011, 22(2):331-334.

    Google Scholar

    XIONG Youming, XU Jianian, FENG Shengli, et al. Evaluation method and standard exploration for gas field sand control technology[J]. Natural Gas Geoscience, 2011, 22(2):331-334.

    Google Scholar

    [50] 邓金根, 李萍, 周建良, 等.中国海上疏松砂岩适度出砂井防砂方式优选[J].石油学报, 2012, 33(4):676-680. doi: 10.3969/j.issn.1001-8719.2012.04.025

    CrossRef Google Scholar

    DENG Jingen, LI Ping, ZHOU Jianliang, et al. Sand control optimization applied to moderately sanding wells in offshore loose sandstone reservoirs[J]. Acta Petrolei Sinica, 2012, 33(4):676-680. doi: 10.3969/j.issn.1001-8719.2012.04.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(3519) PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint