2019 Vol. 39, No. 4
Article Contents

HAO Weijie, XIAO Xiaotong, ZHAO Meixun. The research progress of IP25 in Arctic Sea ice reconstruction[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801
Citation: HAO Weijie, XIAO Xiaotong, ZHAO Meixun. The research progress of IP25 in Arctic Sea ice reconstruction[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801

The research progress of IP25 in Arctic Sea ice reconstruction

More Information
  • The Arctic sea-ice cover is declining with global warming, which bears significant impacts on global thermohaline circulation, biogeochemistry process and climate changes. To comprehensively understand the Arctic environment and to predict its changes in the future, it is important to reconstruct the paleo-sea ice variability for the region. In the recent decade, a newly developed sea-ice proxy IP25(an Ice Proxy with 25 carbon atoms), monounsaturated highly branched isoprenoid (HBI) alkene biosynthesized specifically by sea-ice associated diatoms only found in Arctic and sub-Arctic marine sediments, has been universally used to reconstruct the sea-ice variability. Since the first use of IP25 as a proxy for paleo-sea ice, more and more laboratories have measured this biomarker in Arctic and subarctic sediments to verify the application of IP25 to sea ice reconstruction. In this review, we firstly summarized the traditional indicators for sea ice reconstruction and their limitations, and then described is the scientific basis for IP25 proxy and its development from qualitative description to quantitative calculation as well as it limitations. Secondly, we summarized the case studies of using IP25 to reconstruct the distribution and variation of the sea ice. These studies spatially cross the Central Arctic Ocean, Arctic marginal seas, Arctic estuaries and the subarctic regions, and temporally cover the time scales of the modem times, the Holocene, the Quaternary and the Miocene. A good linear correlation between reconstructed modern sea-ice concentrations by using IP25 and satellite-derived spring sea ice concentrations has been observed, providing the basis for paleo-sea ice reconstruction, which may provide important evidence and insight for numerical simulation of paleoclimate and future sea ice prediction.

  • 加载中
  • [1] Thomas D N, Dieckmann G S. Sea Ice [M]. Oxford: Blackwell Publishing, 2010.

    Google Scholar

    [2] 高众勇, 陈立奇, 蔡卫君, 等.全球变化中的北极碳汇:现状与未来[J].地球科学进展, 2007, 22(8):857-865. doi: 10.3321/j.issn:1001-8166.2007.08.012

    CrossRef Google Scholar

    GAO Zhongyong, CHEN Liqi, CAI Weijun, et al. Arctic carbon sink in global Change: Present and future [J]. Advances in Earth Science, 2007, 22(8):857-865. doi: 10.3321/j.issn:1001-8166.2007.08.012

    CrossRef Google Scholar

    [3] 陈建芳, 金海燕, 李宏亮, 等.北极快速变化对北冰洋碳汇机制和过程的影响[J].科学通报, 2015, 60(35):3406-3416.

    Google Scholar

    CHEN Jianfang, JIN Haiyan, LI Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under arctic rapid change [J]. Chinese Science Bulletin, 2015, 60(35):3406-3416.

    Google Scholar

    [4] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): 1-11.

    Google Scholar

    [5] Wang M, Overland J E. A sea ice free summer Arctic within 30years: An update from CMIP5 models[J]. Geophysical Research Letters, 2012, 36(7): 550-556.

    Google Scholar

    [6] Liu J, Song M, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[C]// Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(31): 12571-12576.

    Google Scholar

    [7] 刘萍.北极航道开通对满足我国能源需求的影响及路径分析[D].上海海洋大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10264-1016912769.htm

    Google Scholar

    LIU Ping. Waterway on the Energy Demand in China and Path Analysis[D]. Shanghai Ocean Univercity, 2016.

    Google Scholar

    [8] 章陶亮, 王汝建, 陈志华, 等.西北冰洋楚科奇海台08P23孔氧同位素3期以来的古海洋与古气候记录[J].极地研究, 2014, 26(1): 46-57.

    Google Scholar

    ZHANG Taoliang, WANG Rujian, CHEN Zhihua, et al. Paleoceanographic and paleoclimatic records of core 08P23 from the Chukchi Plateau, western Arctic Ocean, since MIS3[J]. Chinese Journal of Polar Reserch, 2014, 26(1): 46-57.

    Google Scholar

    [9] Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2010, 27(2):114-127.

    Google Scholar

    [10] O'Regan M, John K S, Moran K, et al. Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge[J]. Quaternary International, 2010, 219(1):168-176.

    Google Scholar

    [11] John K S. Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the LomonosovRidge[J]. Paleoceanography, 2008, 23(1): PA1805.

    Google Scholar

    [12] Sarnthein M, Pflaumann U, Weinelt M. Past extent of sea ice in the northern North Atlantic inferred from foraminifer-alpaleotemperature estimates[J]. Paleoceanography&Paleoclimatology, 2003, 18(2): 1030.

    Google Scholar

    [13] Jiang H, Eiríksson J, Schulz M, et al. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene[J]. Geology, 2005, 33(1):73-76.

    Google Scholar

    [14] Vernal A D, Rochon A, Fréchette B, et al. Reconstructing past sea ice cover of the northern hemisphere from dinocyst assemblages: status of the approach[J]. Quaternary Science Reviews, 2013, 79(79):122-134.

    Google Scholar

    [15] 沙龙滨.格陵兰西部海域1200年以来硅藻记录及古气候、古海冰重建[D].华东师范大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10269-1012435884.htm

    Google Scholar

    SHA Longbin. Diatom-based reconstruction of palaeoclimatic changes and sea-ice concentration off West Greenland during the last 1200 years[D]. East China Normal University, 2012.

    Google Scholar

    [16] Schlüter M, Sauter E J, Schäfer A, et al. Spatial budget of organic carbon flux to the seafloor of the northern North Atlantic (60°N-80°N)[J]. Global Biogeochemical Cycles, 2000, 14(1):329-340. doi: 10.1029/1999GB900043

    CrossRef Google Scholar

    [17] Knies J, Vogt C, Stein R. Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean[J]. Geo-Marine Letters, 1998, 18(3):195-202. doi: 10.1007/s003670050068

    CrossRef Google Scholar

    [18] Belt S T, Massé G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice: IP25 [J]. Organic Geochemistry, 2007, 38 (1): 16-27. doi: 10.1016/j.orggeochem.2006.09.013

    CrossRef Google Scholar

    [19] Volkman J K, Barrett S M, Dunstan G A. C25 and C30highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms[J]. Organic Geochemistry, 1994, 21(3-4):407-414. doi: 10.1016/0146-6380(94)90202-X

    CrossRef Google Scholar

    [20] Belt S T, Allard W G, Massé G, et al. Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers[J]. Geochimica et Cosmochimica Acta, 2000, 64(22):3839-3851. doi: 10.1016/S0016-7037(00)00464-6

    CrossRef Google Scholar

    [21] Belt S T, Massé G, Allard W G, et al. C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus[J]. Organic Geochemistry, 2001, 32(10): 1271-1275. doi: 10.1016/S0146-6380(01)00111-5

    CrossRef Google Scholar

    [22] Belt S T, Massé G, Allard W G, et al. Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis[J]. Organic Geochemistry, 2001, 32(9):1169-1172. doi: 10.1016/S0146-6380(01)00102-4

    CrossRef Google Scholar

    [23] Belt S T, Allard W G, Massé G, et al. Structural characterisation of C30 highly branched isoprenoid alkenes (rhizenes) in the marine diatom Rhizosolenia setigera[J]. Tetrahedron Letters, 2001, 42(32):5583-5585. doi: 10.1016/S0040-4039(01)01063-2

    CrossRef Google Scholar

    [24] Rowland S J, Robson J N. The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in Recent sediments and biota--A review[J]. Marine Environmental Research, 1990, 30(3): 191-216. doi: 10.1016/0141-1136(90)90019-K

    CrossRef Google Scholar

    [25] Rowland S J, Belt S T, Wraige E J, et al. Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia[J]. Phytochemistry, 2001, 56(6): 597-602.

    Google Scholar

    [26] Stein R, Fahl K, Schreck M, et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean[J]. Nature Communications, 2016, 7:11148. doi: 10.1038/ncomms11148

    CrossRef Google Scholar

    [27] Belt S T, Müller J. The Arctic sea ice biomarker IP25: A review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions[J]. Quaternary Science Reviews, 2013, 79(4):9-25.

    Google Scholar

    [28] Müller J, Massé G, Stein R, et al. Variability of sea-ice conditions in the Fram Strait over the past 30, 000 years[J]. Nature Geoscience, 2009, 2(11):772-776. doi: 10.1038/ngeo665

    CrossRef Google Scholar

    [29] Müller J, Wagner A, Fahl K, et al. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach[J]. Earth & Planetary Science Letters, 2011, 306(3):137-148.

    Google Scholar

    [30] Müller J, Stein R. High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts[J]. Earth & Planetary Science Letters, 2014, 403:446-455.

    Google Scholar

    [31] Xiao X, Fahl K, Müller J, et al. Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 155:16-29. doi: 10.1016/j.gca.2015.01.029

    CrossRef Google Scholar

    [32] Volkman J K. Lipid Markers for Marine Organic Matter[M]// Marine Organic Matter: Biomarkers, Isotopes and DNA.Berlin: Springer, 2006: 27-70.

    Google Scholar

    [33] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 1998, 29(5-7):1163-1179. doi: 10.1016/S0146-6380(98)00062-X

    CrossRef Google Scholar

    [34] Volkman J K, Barrett S M, Dunstan G A, et al. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom[J]. Organic Geochemistry, 1993, 20(1):7-15. doi: 10.1016/0146-6380(93)90076-N

    CrossRef Google Scholar

    [35] Müller J, Werner K, Stein R, et al. Holocene cooling culminates in sea ice oscillations in Fram Strait[J]. Quaternary Science Reviews, 2012, 47(47):1-14.

    Google Scholar

    [36] Belt S T, Massé G, Vare L L, et al. Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps[J]. Marine Chemistry, 2008, 112(3-4): 158-167. doi: 10.1016/j.marchem.2008.09.002

    CrossRef Google Scholar

    [37] Vare L L, Massé G, Gregory T R, et al. Sea ice variations in the central Canadian Arctic Archipelago during the Holocene[J]. Quaternary Science Reviews, 2009, 28(13):1354-1366.

    Google Scholar

    [38] Fahl K, Stein R. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records[J]. Earth & Planetary Science Letters, 2012, 351-352(11): 123-133.

    Google Scholar

    [39] Xiao X, Fahl K, Stein R. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): Indicators for organic-carbon sources and sea-ice coverage[J]. Quaternary Science Reviews, 2013, 79(8): 40-52.

    Google Scholar

    [40] Cabedo-Sanz P, Belt S T, Knies J, et al. Identification of contrasting seasonal sea ice conditions during the Younger Dryas[J]. Quaternary Science Reviews, 2013, 79(4):74-86.

    Google Scholar

    [41] Navarro-Rodriguez A, Belt S T, Knies J, et al. Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions[J]. Quaternary Science Reviews, 2013, 79(8):26-39.

    Google Scholar

    [42] Stoynova V, Shanahan T M, Hughen K A, et al. Insights into Circum-Arctic sea ice variability from molecular eochemistry[J]. Quaternary Science Reviews, 2013, 79(4):63-73.

    Google Scholar

    [43] Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57(4):54-64.

    Google Scholar

    [44] Smik L, Cabedo-Sanz P, Belt S T. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index[J]. Organic Geochemistry, 2016, 92:63-69. doi: 10.1016/j.orggeochem.2015.12.007

    CrossRef Google Scholar

    [45] Smik L, Belt S T. Distributions of the Arctic sea ice biomarker proxy IP25, and two phytoplanktonic biomarkers in surface sediments from West Svalbard[J]. Organic Geochemistry, 2017, 105.

    Google Scholar

    [46] Xiao X, Stein R, Fahl K. MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers[J]. Paleoceanography, 2015, 30(7):969-983. doi: 10.1002/2015PA002814

    CrossRef Google Scholar

    [47] Stein R, Fahl K, Gierz P, et al. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial[J]. Nature Communications, 2017, 8(1): 373. doi: 10.1038/s41467-017-00552-1

    CrossRef Google Scholar

    [48] Murton J B, Bateman M D, Dallimore S R, et al. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[J]. Nature, 2010, 464(7289):740-743. doi: 10.1038/nature08954

    CrossRef Google Scholar

    [49] Hörner T, Stein R, Fahl K, et al. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)-A high-resolution biomarker study[J]. Quaternary Science Reviews, 2016, 143:133-149. doi: 10.1016/j.quascirev.2016.04.011

    CrossRef Google Scholar

    [50] Polyak L, Belt S T, Cabedo-Sanz P, et al. Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies[J]. Holocene, 2016, 26(11):1810-1821. doi: 10.1177/0959683616645939

    CrossRef Google Scholar

    [51] Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean)[J]. Journal of Quaternary Science, 2017, 32(3):362-379. doi: 10.1002/jqs.2929

    CrossRef Google Scholar

    [52] Legendre L, Martineau M J, Therriault J C, et al. Chlorophyll a, biomass and growth of sea-ice microalgae along a salinity gradient (southeastern Hudson Bay, Canadian Arctic)[J]. Polar Biology, 1992, 12(3-4):445-450.

    Google Scholar

    [53] Kaufman D S, Ager T A, Anderson N J, et al. Erratum to: Holocene thermal maximum in the western Arctic (0-180°W) [J]. Quaternary Science Reviews, 2004, 23(18-19):2059-2060. doi: 10.1016/j.quascirev.2004.06.001

    CrossRef Google Scholar

    [54] Belt S T, Vare L L, Massé G, et al. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years[J]. Quaternary Science Reviews, 2010, 29(25-26):3489-3504. doi: 10.1016/j.quascirev.2010.06.041

    CrossRef Google Scholar

    [55] Porinchu D F, Macdonald G M, Rolland N. A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago[J]. Journal of Paleolimnology, 2009, 41(1):177-188. doi: 10.1007/s10933-008-9263-x

    CrossRef Google Scholar

    [56] Zabenskie S, Gajewski K. Post-glacial climatic change on Boothia Peninsula, Nunavut, Canada[J]. Quaternary Research, 2007, 68(2):261-270. doi: 10.1016/j.yqres.2007.04.003

    CrossRef Google Scholar

    [57] Kolling H M, Stein R, Fahl K, et al. Short-term variability in late Holocene sea ice cover on the East Greenland Shelf and its driving mechanisms[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 485:336-350. doi: 10.1016/j.palaeo.2017.06.024

    CrossRef Google Scholar

    [58] Massé G, Rowland S J, Sicre M A, et al. Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions[J]. Earth & Planetary Science Letters, 2008, 269(3-4):565-569.

    Google Scholar

    [59] Andrews J T. Seeking a Holocene drift ice proxy: non-clay mineral variations from the SW to N-central Iceland shelf: trends, regime shifts, and periodicities[J]. Journal of Quaternary Science, 2009, 24(7): 664-676. doi: 10.1002/jqs.1257

    CrossRef Google Scholar

    [60] Axford Y, Andresen C S, Andrews J T, et al. Do paleoclimate proxies agree? A test comparing 19 late Holocene climate and sea-ice reconstructions from Icelandic marine and lake sediments[J]. Journal of Quaternary Science, 2011, 26(6):645-656. doi: 10.1002/jqs.1487

    CrossRef Google Scholar

    [61] Cabedo-Sanz P, Belt S T, Jennings A E, et al. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation[J]. Quaternary Science Reviews, 2016, 146:99-115. doi: 10.1016/j.quascirev.2016.06.012

    CrossRef Google Scholar

    [62] Xiao X, Zhao M, Knudsen K L, et al. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes[J]. Earth & Planetary Science Letters, 2017, 472:14-24.

    Google Scholar

    [63] Clotten C, Stein R, Fahl K, et al. Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)[J]. Earth & Planetary Science Letters, 2018, 481:61-72.

    Google Scholar

    [64] Max L, Riethdorf J R, Tiedemann R, et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15000 years[J]. Paleoceanography, 2012, 27(3):3213-3232.

    Google Scholar

    [65] Méheust M, Stein R, Fahl K, et al. High-resolution IP25 -based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18, 000 years[J]. Geo-Marine Letters, 2015, 36(2): 101-111.

    Google Scholar

    [66] Ruan J, Huang Y, Shi X, et al. Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: A multiple biomarker study[J]. Organic Geochemistry, 2017, 113:1-9. doi: 10.1016/j.orggeochem.2017.08.006

    CrossRef Google Scholar

    [67] Kim J H, Rimbu N, Lorenz S J, et al. North Pacific and North Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews, 2004, 23(20-22):2141-2154. doi: 10.1016/j.quascirev.2004.08.010

    CrossRef Google Scholar

    [68] Brown T A, Belt S T, Tatarek A, et al. Source identification of the Arctic sea ice proxy IP25[J]. Nature Communications, 2014, 5: 4197. doi: 10.1038/ncomms5197

    CrossRef Google Scholar

    [69] Brown T A. Production and preservation of the Arctic sea ice diatom biomarker IP25[D]. University of Plymouth, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(3675) PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint