2018 Vol. 38, No. 6
Article Contents

WU Shiguo, ZHU Weilin, MA Yongsheng. Vicissitude of Cenozoic carbonate platforms in the South China Sea:Sedimentation in semi-closed marginal seas[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 1-17. doi: 10.16562/j.cnki.0256-1492.2018.06.001
Citation: WU Shiguo, ZHU Weilin, MA Yongsheng. Vicissitude of Cenozoic carbonate platforms in the South China Sea:Sedimentation in semi-closed marginal seas[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 1-17. doi: 10.16562/j.cnki.0256-1492.2018.06.001

Vicissitude of Cenozoic carbonate platforms in the South China Sea:Sedimentation in semi-closed marginal seas

  • Cenozoic carbonate platforms are widely distributed in the South China Sea. They are characterized by large thickness and strong spatio-temporal variations. This study summarized most of the recently published findings on the geological and geophysical features of the South China Sea. It is found that all these carbonate platforms have experienced a progressive evolution from initiation, extension, flourishing, drowning and relict stages. Most of them are drowned in Late Cenozoic, and often called drowned carbonate platforms by some researchers. The carbonate platforms are unique in the South China Sea and contain rich information on tectonic evolution. The development of carbonate platforms follows the rifting process. They are usually initiated on the high shoulders of a faulted block at the conjugated rifting margin in Eocene and Early Oligocene. By rifting, thinning, and mantle exhumation of the South China Sea margin, the carbonate platforms has kept growing as NE-SW direction ridges, and flourished till Late Early Miocene. Tectonic subsidence provided accommodation space for platform growth. Tectonic tilt, faulting and migration of compressive folds in the front of foreland basins controlled the distribution of thickness and lateral variation in seismic reflection features. Tectonic induced relative sea level change controlled the sedimentary cycles of carbonate platforms in different orders. Furthermore, the rapid subsidence in Late Miocene and the formation of the semi-closed marginal sea caused the drowning of most carbonate platforms. Only a few carbonate platforms might leave behind as isolated platforms with limited distribution and small scale up to present.

  • 加载中
  • [1] Zhang Qiaomin. Coral reefs conservation and management in China[C]//In: Ahmed M, Chong C K, Cesar H (eds). Economic Valuation and Policy Priorities for Sustainable Management of Coral Reefs. WorldFish Center Conference Procedings 70. Penang Malaysia: WorldFish Center, 2004: 198-202.

    Google Scholar

    [2] 张乔民, 余克服, 施祺, 等.全球珊瑚礁监测与管理保护[J].热带海洋学报, 2006, 25(2):71-78. doi: 10.3969/j.issn.1009-5470.2006.02.013

    CrossRef Google Scholar

    ZHANG Qiaomin, YU Kefu, SHI Qi, et al. A review of monitoring conservation and management of global coral reefs[J]. Journal of Tropical Oceanography, 2006, 25(2):71-78. doi: 10.3969/j.issn.1009-5470.2006.02.013

    CrossRef Google Scholar

    [3] Wu S, Zhang X, Yang Z, et al. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: Response to opening of the ocean basin[J]. Interpretation-A Journal of Subsurface Characterization, 2016, 4(3): 1-19.

    Google Scholar

    [4] Fournier F, Borgomano J, Montaggioni L F. Development patterns and controlling factor of Tertiary carbonate buildups: Insights from high resolution seismic data and well data in Malampaya gas field (offshore Palawan, Philippines)[J]. Sedimentary Geology, 2005, 175(1-4): 189-215. doi: 10.1016/j.sedgeo.2005.01.009

    CrossRef Google Scholar

    [5] Steuer S, Frane D, Meresse F, et al. Oligocene-Miocene carbonates and their role for constraining the rifting and collision histroy of the Dangerous Grouds, South China Sea[J]. Marine and Petroleum Geology, 2013, 58: 1-14.

    Google Scholar

    [6] Fyhn M, Nielsen L, Boldreel L, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26: 1-24. doi: 10.1016/j.marpetgeo.2007.07.014

    CrossRef Google Scholar

    [7] Shao L, Li Q, Zhu W, et al. Neogene carbonate platform development in the NW South China Sea: Litho-, bio- and chemo-stratigraphic evidence[J]. Marine Geology, 2017, 385: 233-243. doi: 10.1016/j.margeo.2017.01.009

    CrossRef Google Scholar

    [8] Wu S, Yang Z, Wang D, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea[J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    CrossRef Google Scholar

    [9] Zhao Q, Wu S, Xu H, et al. Sedimentary facies and evolution of aeolianites on Shidao Island, Xisha Islands[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(2):398-413. doi: 10.1007/s00343-011-0018-6

    CrossRef Google Scholar

    [10] 周小康, 汪瑞良, 曾驿, 等.珠江口盆地东沙隆起珠江组碳酸盐岩层序地层及沉积模式[J].石油天然气学报, 2011, 33(9): 1-6. doi: 10.3969/j.issn.1000-9752.2011.09.001

    CrossRef Google Scholar

    ZHOU Xiaokang, WANG Ruiliang, ZENG Yi, et al. Carbonate sequence stratigraphy and sedimentary modes of Dongsha Massif in Pearl River Mouth Basin[J]. Journal of Oil and Gas Technology, 2011, 33(9): 1-6. doi: 10.3969/j.issn.1000-9752.2011.09.001

    CrossRef Google Scholar

    [11] Chen D, Wu S, Dong D, et al. Focused fluid flow in the Baiyun Sag, northern South China Sea: implications for the source of gas in hydrate reservoirs[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(1):178-189. doi: 10.1007/s00343-013-2075-5

    CrossRef Google Scholar

    [12] Swart P, Carling P. Editorial: Citations and other musings[J]. Sedimentology, 2008, 55(5): 1115-1116. doi: 10.1111/j.1365-3091.2008.01000.x

    CrossRef Google Scholar

    [13] 魏喜, 邓晋福, 谢文彦, 等.南海盆地演化对生物礁的控制及礁油气藏潜力分析[J].地学前缘, 2005, 12(3): 245-252. doi: 10.3321/j.issn:1005-2321.2005.03.026

    CrossRef Google Scholar

    WEI Xi, DENG Jinfu, XIE Wenyan et al. Constraints on biogenetic reef formation during evolution of the South China Sea and exploration potential nalysis[J]. Earth Science Frontiers, 2005, 12(3): 245-252. doi: 10.3321/j.issn:1005-2321.2005.03.026

    CrossRef Google Scholar

    [14] 张功成, 赵志刚, 柳永杰.北部湾盆地伸展构造对油气聚集的控制作用[C].中国石油地质年会, 2009.http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7225783

    Google Scholar

    ZHANG Gongcheng, ZHAO Zhigang, LIU Yongjie. Characteristics of fault structure and it control on hydrocarbons in the Beibuwan Basin[C]. CAPG annual meeting, 2009.

    Google Scholar

    [15] 朱伟林, 张功成, 钟锴, 等.中国南海油气资源前景[J].中国工程科学, 2013, 12(5): 46-50.

    Google Scholar

    ZHU Werlin, ZHANG Gongcheng, ZHONG Kai, et al. South China Sea: Oil and gas outlook[J]. Engineering Sciences, 2013, 12(5): 46-50.

    Google Scholar

    [16] 范嘉松.中国生物礁与油气[M].北京:科学出版社, 1996: 329.

    Google Scholar

    FAN Jiasong. China Reefs, Oil and Gas[M]. Beijing: Science Press, 1996: 329.

    Google Scholar

    [17] Story C, Peng P, Heubeck C, et al. An integrated geoscience and reservoir simulation study of the Liuhua 11-1 Field: South China Sea[C]//In 32nd Annual Offshore Technology Conference Transactions, Houston, 2000: 1-11. https://www.researchgate.net/publication/249856885_An_integrated_study_of_the_Liuhua_11-1_Field_using_an_ultra_high_resolution_3D_seismic_dataset_South_China_Sea

    Google Scholar

    [18] Wilson M E J. Cenozoic carbonates in Southeat Asia: Implications for equatorial carbonate development[J]. Sedimentary Geology, 2002, 147: 295-428. doi: 10.1016/S0037-0738(01)00228-7

    CrossRef Google Scholar

    [19] Betzler C, Lindhorst S, Eberli G P, et al. Periplatform drift: The combined result of contour current and off-bank transport along carbonate platforms[J]. Geology, 2014, 42: 871-874. doi: 10.1130/G35900.1

    CrossRef Google Scholar

    [20] Willams T D, Kroon S, Spezzaferri. Middle-upper-Miocene cyclostratigraphy of downhole logs and short to long term astronomical cycles in carbonate production of Great Bahama Bank[J]. Marine Geology, 2002, 185:75-93 doi: 10.1016/S0025-3227(01)00291-2

    CrossRef Google Scholar

    [21] Harris P M, Purkis S J, Ellis J, et al. Mapping bathymetry and depositional facies on Great Bahama Bank[J]. Sedimentology, 2015, 62(2): 566-589. doi: 10.1111/sed.12159

    CrossRef Google Scholar

    [22] Jorry S J, Camoin G F, Jouet G, et al. Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study[J]. Acta Oecol, 2016, 72: 129-143. doi: 10.1016/j.actao.2015.10.014

    CrossRef Google Scholar

    [23] Saqab M M, Bourget J. Seismic geomorphology and evolution of early-mid Miocene isolated carbonate build-ups in the Timor Sea, North West Shelf of Australia[J]. Marine Geology, 2016, 379: 224-245. doi: 10.1016/j.margeo.2016.06.007

    CrossRef Google Scholar

    [24] 何起祥, 张明书, 业治铮, 等.西沙群岛石岛晚更新世碳酸盐沉积物的稳定同位素地层学[J].海洋地质与第四纪地质, 1986, 3(3): 3-10.

    Google Scholar

    HE Qixiang, ZHANG Mingshu, YE Zhizheng, et al. Carbonand oxygen stable isotope stratigraphy of late Pleistocene carbonate deposits at Shidao island, Xisha island, Chna[J]. Marine Geology & Quaternary Geology, 1986, 3(3): 3-10.

    Google Scholar

    [25] Yi L, Jian Z, Liu X, et al. Astronical tuning and magnetostratigraphy of Neogene biogenic reefs in the Xisha Islands, South China Sea[J]. Science Bulletin, 2018, 63: 564-573. doi: 10.1016/j.scib.2018.04.001

    CrossRef Google Scholar

    [26] Zhu W L, Xie X N, Wang Z F, et al. New insights on the origin of the basement of the Xisha Uplift, South China Sea[J]. Science China Earth Science, 2017, 60: 2214-2222. doi: 10.1007/s11430-017-9089-9

    CrossRef Google Scholar

    [27] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research Solid Earth, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280

    CrossRef Google Scholar

    [28] Cullen A, Reemst P, Henstra G, et al. Rifting of the South China Sea: new perspectives[J]. Petroleum Geoscience, 2010, 16(3): 273-282. doi: 10.1144/1354-079309-908

    CrossRef Google Scholar

    [29] Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 43: 63-87.

    Google Scholar

    [30] Hayes D E, Nissen S S. The South China sea margins: Implications for rifting contrasts[J]. Earth & Planetary Science Letters, 2005, 237(3): 601-616.

    Google Scholar

    [31] Li C, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry Geophysics Geosystems, 2015, 15(12): 4958-4983.

    Google Scholar

    [32] Taylor B, Hayes D E. Origin and history of the South China Sea[C]//In Hayes D E (Ed.).The tectonics and geological evolution of Southeast Asia Seas and islands, Part 2. American Geophysical Union Monograph, 1983, 27: 23-56.https://www.researchgate.net/publication/258928283_Origin_and_History_of_the_South_China_Sea_Basin

    Google Scholar

    [33] Morley R. Correlation across the South China Sea Using VIM Transgressive-Regressive Cycles[C]// American Association of Petroleum Geologists Workshop on Southchina Sea Kota Kinabalu May, 2015.

    Google Scholar

    [34] Clift P, Lin J. Preferential mantle lithospheric extension under the South China margin[J]. Marine & Petroleum Geology, 2001, 18(8): 929-945.

    Google Scholar

    [35] Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea[J]. Marine & Petroleum Geology, 2014, 58: 704-720.

    Google Scholar

    [36] 李家彪.南海大陆边缘动力学:科学实验与研究进展[J].地球物理学报, 2011, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002

    CrossRef Google Scholar

    LI Jiabiao. Dynamics of the continental margins of South China Sea: scientific experiments and research progress[J]. Chinese J. Geophysics, 2011, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002

    CrossRef Google Scholar

    [37] Ding W, Li J, Clift P D. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349[J]. Journal of Asian Earth Sciences, 2016, 115: 97-113. doi: 10.1016/j.jseaes.2015.09.013

    CrossRef Google Scholar

    [38] Gao J, Wu S, Mcintosh K, et al. Crustal structure and extension mode in the northwestern margin of the South China Sea[J]. Geochemistry Geophysics Geosystems, 2016, 17(6): 2143-2167. doi: 10.1002/2016GC006247

    CrossRef Google Scholar

    [39] Reston. The extension discrepance at North Atlantic non-volcanic rifted margins: depth dependent stretching or unrecognized fault?[J]. Geology, 2007, 35: 367-370. doi: 10.1130/G23213A.1

    CrossRef Google Scholar

    [40] Sun Z, Zhong Z, Keep M, et al. 3D analogue modeling of the South China Sea: A discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 2009, 34(4): 544-556. doi: 10.1016/j.jseaes.2008.09.002

    CrossRef Google Scholar

    [41] Hutchison C S. Marginal basin evolution: the south Southern China Sea[J]. Marine & Petroleum Geology, 2004, 21: 1129-1148.

    Google Scholar

    [42] Savva D, Pubellier M, Franke D, et al. Different expressions of rifting on the South China Sea margins[J]. Marine & Petroleum Geology, 2014, 58: 579-598.

    Google Scholar

    [43] Steuer S, Franke D, Meresse F, et al. Using Oligocene to Pliocene limestone formations to constrain the collision history of Palawan Island and the Dangerous Grounds at the southeastern margin of the South China Sea[C]// Petroleum Geology and Exploration of Palawan and Surrounding areas. 2014.https://www.sciencedirect.com/science/article/pii/S136791201300031X

    Google Scholar

    [44] Bai Y, Wu S, Liu Z, et al. Full-fit reconstruction of the South China Sea conjugate margins[J]. Tectonophysics, 2015, 661: 121-135. doi: 10.1016/j.tecto.2015.08.028

    CrossRef Google Scholar

    [45] Fan J K, Wu S G. P-wave seismic tomography of the Manila subduction zone[J]. Chinese Journal of Geophysics, 2014, 57(7): 2127-2137.

    Google Scholar

    [46] Wu J, Suppe J. Proto-South China Sea plate tectonics using subducted slab constraints from tomography[J]. Journal of Earth Science, 2017(B4):1-15.

    Google Scholar

    [47] Rudolph K W, Lehmann P J. Platform evolution and sequence stratigraphy of the Natuna Platform, South China Sea[M]// Controls on Carbonate Platforms and Basin Development. 1987: 353-361.

    Google Scholar

    [48] Williams, Harold H. Play concepts-northwest Palawan, Philippines[J]. Journal of Southeast Asian Earth Sciences, 1997, 15(2-3): 251-273. doi: 10.1016/S0743-9547(97)00011-1

    CrossRef Google Scholar

    [49] 姚永坚, 姜玉坤, 曾祥辉.南沙海域新生代构造运动特征[J].中国海上油气, 2002, 16(2): 113-117.

    Google Scholar

    YAO Yongjian, JIANG Yukun, ZENG Xianghui. Cenozoic tectonic movements in Nansha area, South China Sea[J], China Offshore Oll and Gas(Geology), 2002, 16(2): 113-117.

    Google Scholar

    [50] Zampetti V, Schlager W. Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data, Luconia province, off shore Sarawak, Malaysia[J]. Marine and Petroleum Geology, 2004, 21: 517-534. doi: 10.1016/j.marpetgeo.2004.01.006

    CrossRef Google Scholar

    [51] Sattler U, Zampetti V, Schlager W, et al. Late Leaching under deep burial conditions: a case study from the Miocene Zhujiang Carbonate Reservoir, South China Sea[J]. Marine and Petroleum Geology, 2004, 21(8): 977-992. doi: 10.1016/j.marpetgeo.2004.05.005

    CrossRef Google Scholar

    [52] 朱伟林, 张功成, 杨少坤, 等.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社, 2007: 391.

    Google Scholar

    ZHU Weilin, ZHANG Gongcheng, YANG Shaokun, et al. Gas geology of continental margin basins in Northern South China Sea[M]. Beijing: Petroleum Industry Press, 2007:391.

    Google Scholar

    [53] 杜学斌, 陆永潮, 裴建祥, 等.南海南部礼乐盆地上渐新统-下中新统生物礁生长模式及分布规律[J].海洋地质与第四纪地质, 2018, 38(6):85-94.

    Google Scholar

    DU Xuebin, LU Yongchao, PEI Jianxiang, et al. The characteristics and distribution of Upper Oligocene to Lower Miocene reefs in Liyue Basin, South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6):85-94

    Google Scholar

    [54] 鄢伟, 张光学, 张莉, 等.南海北康盆地碳酸盐台地的地震响应及分布特征[J].海洋地质与第四纪地质, 2018, 38(6):105-113.

    Google Scholar

    YAN Wei, ZHANG Guangxue, ZHANG Li, et al. The seismic response and distribution characteristics of the Middle Miocene carbonate platform in Beikang Basin of the southern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6):105-113.

    Google Scholar

    [55] 王彬, 吴时国, 吕福亮, 等.南海中建岛礁的地震反射特征及其沉积演化研究[J].海洋地质与第四纪地质, 2018, 38(6):18-24.

    Google Scholar

    WANG Bin, WU Shiguo, LV Fuliang, et al. Seismic Reflect Characteristics and Evolution of Sedimentary at Zhongjian Ree, South China Sea[J], Marine Geology & Quaternary Geology, 2018, 38(6):18-24.

    Google Scholar

    [56] 周小康, 卫哲, 傅恒, 等.南海北部珠江口盆地深水区碳酸盐岩发育特征及地震识别[J].海洋地质与第四纪地质, 2018, 38(6):123-135.

    Google Scholar

    ZHOU Xiaokang, WEI Zhe, FU heng, et al. Development characteristics and seismic identification of carbonate rocks in the deep-water area of the Pearl River Mouth Basin in the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6):123-135.

    Google Scholar

    [57] 杨朝云, 韩孝辉, 冯亚坤, 等.西沙海区宣德环礁的地震层序发育特征[J].海洋地质与第四纪地质, 2018, 38(6):25-36.

    Google Scholar

    YANG Chaoyun, HAN Xiaohui, FENG Yakun, et al. Seismic Sequence Development Characteristics of Xuande Atoll, Xisha Area[J]. Marine Geology & Quaternary Geology, 2018, 38(6):25-36.

    Google Scholar

    [58] Betzler C, Fürstenau J, Lüdmann T, et al. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean[J]. Basin Research, 2013, 25(2):172-196. doi: 10.1111/j.1365-2117.2012.00554.x

    CrossRef Google Scholar

    [59] Christian B, Eberli G P, Dick K, et al. The abrupt onset of the modern South Asian Monsoon winds[J]. Scientific Reports, 2016, 6:29838. doi: 10.1038/srep29838

    CrossRef Google Scholar

    [60] Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20Ma[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254(3):561-582.

    Google Scholar

    [61] Zhao Quanhong, Jian Zhimin, Wang Jiliang, et al. Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea[J]. Science China Earth Sciences, 2001, 44(10):934-942. doi: 10.1007/BF02907086

    CrossRef Google Scholar

    [62] Bosence D. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic[J]. Sedimentary Geology, 2005, 175: 49-72. doi: 10.1016/j.sedgeo.2004.12.030

    CrossRef Google Scholar

    [63] Purser B H. Syn-rift diagenesis of Middle Miocene carbonate platforms on the north-western Red Sea coast, Egypt[J]. 1998.https://link.springer.com/chapter/10.1007%2F978-94-011-4930-3_20

    Google Scholar

    [64] Lü C L, Wu S G, Yao Y, et al. Development and controlling factors of Miocene carbonate platform in the Nam Con Son Basin, Southwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 45: 55-68. doi: 10.1016/j.marpetgeo.2013.04.014

    CrossRef Google Scholar

    [65] 吕炳全, 徐国强, 王红罡, 等.南海新生代碳酸盐台地淹没事件纪录的海底扩张[J].地质科学, 2002, 37(4): 405-414. doi: 10.3321/j.issn:0563-5020.2002.04.003

    CrossRef Google Scholar

    LV Binquan, XU Guoqiang, WANG Hongzheng, et al. Sea floor spreading recorded by drowning events of Cenozoic carbonate platforms in the South China Sea[J]. Chinese journal of geology, 2002, 37(4): 405-414. doi: 10.3321/j.issn:0563-5020.2002.04.003

    CrossRef Google Scholar

    [66] 徐国强, 吕炳全, 王红罡.新生代南海北部碳酸盐台地的淹没事件研究[J], 同济大学学报, 2002, 30(1): 35-40. doi: 10.3321/j.issn:0253-374X.2002.01.007

    CrossRef Google Scholar

    XU Guoqiang, LV Bingquan, WANG Hongzheng. Drowning events research: insights from Cenozoic carbonate platforms in Northern South China Sea[J]. Journal of Tongji University, 2002, 30(1): 35-40. doi: 10.3321/j.issn:0253-374X.2002.01.007

    CrossRef Google Scholar

    [67] Wu S, Gao J, Zhao S, et al. Post-rift uplift and focused fluid flow in the passive margin of northern South China Sea[J]. Tectonophysics, 2014, 615: 27-39.

    Google Scholar

    [68] Ma Y, Wu S, Lv F, et al. Seismic characteristics and development of the xisha carbonate platforms, northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2011, 40(3), 770-783. doi: 10.1016/j.jseaes.2010.11.003

    CrossRef Google Scholar

    [69] Moldovanyi E P, Wall F M, Zhang J Y. Regional exposure events and platform evolution of Zhujiang Formation carbonates, Pearl River Mouth Basin: Evidence from primary and diagenetic seismic facies[J]. AAPG Memoir, 1995, 63: 125-140.

    Google Scholar

    [70] 施小斌, 丘学林, 夏戡原, 等.南海热流特征及其构造意义[J].热带海洋学报, 2003, 22(2):63-73. doi: 10.3969/j.issn.1009-5470.2003.02.007

    CrossRef Google Scholar

    SHI Xiaobin, QIU Xuelin, XIA Kanyuan, et al. Heat flow characteristics and its tectonic significance of South China Sea[J]. Journal of Tropical Oceanography, 2003, 22(2):63-73. doi: 10.3969/j.issn.1009-5470.2003.02.007

    CrossRef Google Scholar

    [71] 徐行, 罗贤虎, 许鹤华, 等.南海地热流探测、研究与展望[J].南海地质研究, 2015:1-18.

    Google Scholar

    XU Dai, LUO Xianhu, XU Hehua, et al, Heat flow's detection, research and prospects in South China Sea[J]. Research of Eological South China Sea, 2015:1-18

    Google Scholar

    [72] Lin M, Zhang J. Thermal structure about southwest sub-basin of South China Sea[J]. Earthquake Science, 2011, 24(5):427-436 doi: 10.1007/s11589-011-0805-3

    CrossRef Google Scholar

    [73] 施小斌, 于传海, 陈梅, 等.南海北部陆缘热流变化特征及其影响因素分析[J].地学前缘, 2017, 24(3):56-64.

    Google Scholar

    SHI Xiaobin, YU Chuanhai, CHEN Mei, et al. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea[J]. Earth Science Frontiers, 2017, 24(3): 56-64.

    Google Scholar

    [74] 陈爱华, 徐行, 罗贤虎, 等.南海北康盆地热流分布特征及其构造控制因素探讨[J].地质学报, 2017, 91(8):1720-1728. doi: 10.3969/j.issn.0001-5717.2017.08.005

    CrossRef Google Scholar

    CHEN Aihua, XU Xing, LUO Xianhu, et al. Heat flow characteristics and controlling factors of Beikang Basin in South China Sea[J], Acta Geological Sinica, 2017, 91(8): 1720-1728. doi: 10.3969/j.issn.0001-5717.2017.08.005

    CrossRef Google Scholar

    [75] 徐行, 姚永坚, 彭登, 等.南海西南次海盆的地热流特征与分析[J].地球物理学报, 2018(7):2915-2925.

    Google Scholar

    XU Hang, YAO Yongjian, PEN Deng, et al. The Characteristics and analysis of heat flow in the Southwest sub-basin of South China Sea[J]. Chinese Journal of Geophysic, 2018(7): 2915-2925.

    Google Scholar

    [76] Li Q, Wang P, Zhao Q, et al. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea[J]. Marine Geology, 2006, 230 (3): 217-235.

    Google Scholar

    [77] Ma B, Wu S, Betzler C, et al. Geometry, internal architecture, and evolution of buried volcanic mounds in the northern South China Sea[J]. Marine and Petroleum Geology, 2018, 97: 540-555. doi: 10.1016/j.marpetgeo.2018.07.029

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(3853) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint