2018 Vol. 38, No. 2
Article Contents

ZHANG Wentao, XU Hehua, YANG Xiaoqiu. Geothermal data processing and analysis for IODP Expedition 349[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 156-164. doi: 10.16562/j.cnki.0256-1492.2018.02.016
Citation: ZHANG Wentao, XU Hehua, YANG Xiaoqiu. Geothermal data processing and analysis for IODP Expedition 349[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 156-164. doi: 10.16562/j.cnki.0256-1492.2018.02.016

Geothermal data processing and analysis for IODP Expedition 349

More Information
  • The seafloor heat flow, as an effective parameter to the study of thermal state, is an important indicator of the oceanic crust or upper crustal lithosphere. To understand the geothermal distribution pattern of the deepwater areas of the South China Sea, the geothermal data of IODP Expedition 349 is processed and studied. We acquired shallow thermal conductivities at four sites and seafloor heat flow data at three sites. The results show that the thermal conductivity varies in a range of 0.8 ~ 2.2W/(m·K), which depends upon the composition of sediments. The thermal conductivity of the sediments increases slightly with depth, probably owing to the effect of sediment compaction. The heat flow of Hole U1431D, Hole U1432C and Hole U1433A is 24±8mW/m2, 105±3mW/m2 and 89±2mW/m2 respectively, basically consistent with previous results and the data from the nearby area. It proves that our results are reliable. The reverse of geothermal gradient and the low heat flow at Site U1431 might be caused by a downwell limb of hydro-thermal circulation.

  • 加载中
  • [1] 李官保, 裴彦良, 刘保华.海底热流探测技术综述[J].地球物理学进展, 2005, 20(3): 611-619. doi: 10.3969/j.issn.1004-2903.2005.03.005

    CrossRef Google Scholar

    LI Guanbao, PEI Yanliang, LIU Baohua. Review of measurement techniques of seafloor heat flow[J]. Progress in Geophysics, 2005, 20(3): 611-619. doi: 10.3969/j.issn.1004-2903.2005.03.005

    CrossRef Google Scholar

    [2] 汪品先.南海——我国深海研究的突破口[J].热带海洋学报, 2009, 28(3): 1-4. doi: 10.3969/j.issn.1009-5470.2009.03.001

    CrossRef Google Scholar

    WANG Pingxian. Toward scientific breakthrough in the South China Sea[J]. Journal of Tropical Oceanography, 2009, 28(3): 1-4. doi: 10.3969/j.issn.1009-5470.2009.03.001

    CrossRef Google Scholar

    [3] 徐行, 罗贤虎, 许鹤华, 等.南海地热流探测、研究与展望[J].南海地质研究, 2015(1): 1-18.

    Google Scholar

    XU Xing, LUO Xianhu, XU Hehua, et al. The measurement, review and prospect on geothermal studies of the South China Sea[J]. Geological Research of South China Sea, 2015(1): 1-18.

    Google Scholar

    [4] 李春峰, 宋晓晓.国际大洋发现计划IODP349航次[J].上海国土资源, 2014, 35(2): 43-48. doi: 10.3969/j.issn.2095-1329.2014.02.012

    CrossRef Google Scholar

    LI Chunfeng, SONG Xiaoxiao. International Ocean Discovery Program (IODP) expedition 349[J]. Shanghai Land & Resources, 2014, 35(2): 43-48. doi: 10.3969/j.issn.2095-1329.2014.02.012

    CrossRef Google Scholar

    [5] International Ocean Discovery Program. Illuminating earth's past, present, and future: IODP Science Plan for 2013-2023[R]. Washington DC: Integrated Ocean Drilling Program, 2011.

    Google Scholar

    [6] Li C F, Lin J, Kulhanek D K, the Expedition 349 Scientists. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics[R]. College Station, TX: International Ocean Discovery Program, 2015.

    Google Scholar

    [7] 施小斌, 丘学林, 夏戡原, 等.南海热流特征及其构造意义[J].热带海洋学报, 2003, 22(2): 63-73. doi: 10.3969/j.issn.1009-5470.2003.02.007

    CrossRef Google Scholar

    SHI Xiaobin, QIU Xuelin, XIA Kanyuan, et al. Heat flow characteristics and its tectonic significance of South China Sea[J]. Journal of Tropical Oceanography, 2003, 22(2): 63-73. doi: 10.3969/j.issn.1009-5470.2003.02.007

    CrossRef Google Scholar

    [8] Li C F, Shi X B, Zhou Z Y, et al. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications[J]. Geophysical Journal International, 2010, 182(3): 1229-1247. doi: 10.1111/j.1365-246X.2010.04702.x

    CrossRef Google Scholar

    [9] 姚伯初, 曾维军, HAYES D E, 等.中美合作调研南海地质专报[M].武汉:中国地质大学出版社, 1994: 34-140.

    Google Scholar

    YAO Bochi, ZENG Weijun, HAYES D E, et al. The Geological Memoir of South China Sea Surveyed Jointly by China & USA[M]. Wuhan: China University of Geosciences Press, 1994: 34-140.

    Google Scholar

    [10] Niseen S S, Hayes D E, Yao B C. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea[J]. Journal of Geophysical Research, 1995, 100(B11): 22447-22483. doi: 10.1029/95JB01868

    CrossRef Google Scholar

    [11] Wang P, Prell W L, Blum P, et al. Proceedings of the ocean drilling program, initial reports, 184[R]. College Station, TX: Ocean Drilling Program, 2000.

    Google Scholar

    [12] Shyu C T, Hsu S K, Liu C S. Heat flows off Southwest Taiwan: measurements over mud diapirs and estimated from bottom simulating reflectors[J]. Terrestrial, Atmospheric and Oceanic Sciences, 1998, 9(4): 795-812. doi: 10.3319/TAO.1998.9.4.795(TAICRUST)

    CrossRef Google Scholar

    [13] 徐行, 施小斌, 罗贤虎, 等.南海西沙海槽地区的海底热流测量[J].海洋地质与第四纪地质, 2006, 26(4): 51-58.

    Google Scholar

    XU Xing, SHI Xiaobin, LUO Xianhu, et al. Heat flow measurements in the Xisha trough of the South China Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 51-58.

    Google Scholar

    [14] 李亚敏, 罗贤虎, 徐行, 等.南海北部陆坡深水区的海底原位热流测量[J].地球物理学报, 2010, 53(9): 2161-2170. doi: 10.3969/j.issn.0001-5733.2010.09.016

    CrossRef Google Scholar

    LI Yamin, LUO Xianhu, Xu Xing, et al. Seafloor in-situ heat flow measurements in the deep-water area of the northern slope, South China Sea[J]. Chinese Journal of Geophysics, 2010, 53(9): 2161-2170. doi: 10.3969/j.issn.0001-5733.2010.09.016

    CrossRef Google Scholar

    [15] 黄磊, 陈泓君, 高红芳, 等.南海中央海盆热流特征及成因[J].海洋地质前沿, 2013, 29(11): 39-43.

    Google Scholar

    HUANG Lei, CHEN Hongjun, GAO Hongfang, et al. Characteristics and genesis of geotherm in the central basin of South China Sea[J]. Marine Geology Frontiers, 2013, 29(11): 39-43.

    Google Scholar

    [16] Shyu C T, Chen Y J, Chiang S T, et al. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 845-869. doi: 10.3319/TAO.2006.17.4.845(GH)

    CrossRef Google Scholar

    [17] 张毅, 何丽娟, 徐行, 等.南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究[J].地球物理学进展, 2009, 24(1): 183-194.

    Google Scholar

    ZHANG Yi, HE Lijuan, XU Xing, et al. The disagreement between BSRs and the base of methane hydrate stability zones in the Shenhu Area north of the South China Sea[J]. Progress in Geophysics, 2009, 24(1): 183-194.

    Google Scholar

    [18] 何丽娟, 雷兴林, 张毅.南海北部神狐海域天然气水合物形成聚集的数值模拟研究[J].地球物理学报, 2011, 54(5): 1285-1292. doi: 10.3969/j.issn.0001-5733.2011.05.017

    CrossRef Google Scholar

    HE Lijuan, LEI Xinglin, ZHANU Yi. Numerical modeling of gas hydrate accumulation in the marine sediments of Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(5): 1285-1292. doi: 10.3969/j.issn.0001-5733.2011.05.017

    CrossRef Google Scholar

    [19] 罗贤虎, 徐行, 施小斌, 等.室内海底沉积物热导率测量的原理与方法——以TK04热导率测量系统为例[J].海洋技术, 2008, 27(2): 88-91. doi: 10.3969/j.issn.1003-2029.2008.02.020

    CrossRef Google Scholar

    LUO Xianhu, XU Xing, SHI Xiaobing, et al. Principle and method of submarine sediment thermal conductivity measurement in laboratory-with TK04 thermal conductivity measurement system as example[J]. Ocean Technology, 2008, 27(2): 88-91. doi: 10.3969/j.issn.1003-2029.2008.02.020

    CrossRef Google Scholar

    [20] Horai K I, Von Herzen R P. Measurement of heat flow on Leg 86 of the deep sea drilling project[C]//Initial Reports of the Deep Sea Drilling Project, 86. Washington, DC: U.S. Government Printing Office, 1985: 759-777.

    Google Scholar

    [21] Pfender M, Villinger H. Miniaturized data loggers for deep sea sediment temperature gradient measurements[J]. Marine Geology, 2002, 186(3-4): 557-570. doi: 10.1016/S0025-3227(02)00213-X

    CrossRef Google Scholar

    [22] Kasubuchi T. Twin transient-state cylindrical-probe method for the determination of the thermal conductivity of soil[J].Soil Science, 1977, 124(5):255-258. doi: 10.1097/00010694-197711000-00001

    CrossRef Google Scholar

    [23] Bullard E C. The flow of heat through the floor of the Atlantic Ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1954, 222(1150): 408-429. doi: 10.1098/rspa.1954.0085

    CrossRef Google Scholar

    [24] Ratcliffe E H. The thermal conductivities of ocean sediments[J]. Journal of Geophysical Research, 1960, 65(5): 1535-1541. doi: 10.1029/JZ065i005p01535

    CrossRef Google Scholar

    [25] Hyndman R D, Erickson A J, Von Herzen R P. Geothermal measurements on DSDP Leg 26[C]//Initial Reports of the Deep Sea Drilling Project, 26. Washington: U.S. Government Printing Office, 1974: 675-742.

    Google Scholar

    [26] 许鹤华, 马辉, 宋海斌, 等.南海东部海盆扩张过程的数值模拟[J].地球物理学报, 2011, 54(12): 3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008

    CrossRef Google Scholar

    XU Hehua, MA Hui, SONG Haibin, et al. Numerical simulation of Eastern South China Sea basin expansion[J]. Chinese Journal of Geophysics, 2011, 54(12): 3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008

    CrossRef Google Scholar

    [27] 施小斌, 于传海, 陈梅, 等.南海北部陆缘热流变化特征及其影响因素分析[J].地学前缘, 2017, 24(3): 56-64.

    Google Scholar

    SHI Xiaobin, YU Chuanhai, CHEN Mei, et al. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea[J]. Earth Science Frontiers, 2017, 24(3): 56-64.

    Google Scholar

    [28] 张健, 李家彪.南海西南海盆壳幔结构重力反演与热模拟分析[J].地球物理学报, 2011, 54(12): 3026-3037. doi: 10.3969/j.issn.0001-5733.2011.12.005

    CrossRef Google Scholar

    ZHANG Jian, LI Jiabiao. Gravity inversion and thermal modeling about the crust-mantle structure of Southwest basin in the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3026-3037. doi: 10.3969/j.issn.0001-5733.2011.12.005

    CrossRef Google Scholar

    [29] 李学伦.海洋岩石圈的热模式及海底地壳的地热水对流[J].海洋通报, 1982, 1(6): 85-92.

    Google Scholar

    LI Xuelun. The thermal model of the oceanic lithosphere and the geothermal convection of the seabed crust[J]. Marine Science Bulletin, 1982, 1(6): 85-92.

    Google Scholar

    [30] 施小斌, 杨小秋, 赵俊峰, 等.海底下的水热活动与南海海山区海底热流探测[C]//中国地球物理学会第二十七届年会论文集.长沙: 中国地球物理学会, 2011.http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7627881

    Google Scholar

    SHI Xiaobin, YANG Xiaoqiu, ZHAO Junfeng, et al. Hydrothermal circulation under seafloor and coming seafloor heat flow investigation in the mountainous basin of the South China Sea[C]//China Geophysical Society Twenty-Seventh Annual Conference Proceedings. Changsha: China Geophysical Society, 2011.

    Google Scholar

    [31] Fisher A T, Stein C A, Harris R N, et al. Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate[J]. Geophysical Research Letters, 2003, 30(11): 1550. doi: 10.1029/2002GL016766

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(1890) PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint