2018 Vol. 38, No. 1
Article Contents

ZHANG Xiaoyu, HE Mengying, WANG Bin, RITS D S, ZHENG Hongbo. Provenance study of the sediments in Wei River using the detrital zircon U-Pb dating[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 202-211. doi: 10.16562/j.cnki.0256-1492.2018.01.021
Citation: ZHANG Xiaoyu, HE Mengying, WANG Bin, RITS D S, ZHENG Hongbo. Provenance study of the sediments in Wei River using the detrital zircon U-Pb dating[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 202-211. doi: 10.16562/j.cnki.0256-1492.2018.01.021

Provenance study of the sediments in Wei River using the detrital zircon U-Pb dating

More Information
  • The Weihe Basin is a Cenozoic intracontinental faulted basin owing its origin to the evolution of the Qinling Orogenic belt. It receives a large amount of clastic deposits from the Qinling mountain. To establish the sediment "source to sink" system for the basin is important to the understanding of the relationship between the basin and the mountain and to the investigation of the tectono-sedimentary evolution of this region. We, in this paper, studied 11 sediment samples collected from both the mainstream and the major tributaries of the Wei River using the detrital zircon U-Pb dating as the mean. Results show that there are five zircon age groups in the mainstream of the Wei River, i.e. 100~300Ma, 300~500Ma, 700~1000Ma, 1700~2000Ma and 2100~2500Ma, dominated by the groups of 100~300Ma and 300~500Ma, suggesting that the sediments mainly come from the northern Qinling Orogenic belt. The content of the zircon age groups of 1700~2000Ma and 2100~2500Ma occur mainly in the upstream sediments indicating the exposure of the Proterozoic rocks in the upper reach. The tributaries of the Wei River show clearly differences in the sediment zircon ages. For examples, the Jing River and the Luo River drained through the Loess Plateau have the similar age groups of 200~300 Ma、400~500 Ma、800~1100 Ma、1800~2000 Ma and 2400~2550 Ma. And the ages of the Ba River sediment obviously inherit the characteristic of the northern Qinling Orogenic belt. According to the provenance analysis, it is concluded that the Jing River is the major contributor of sediment to the mainstream of the Wei River, the Luo River has a certain extent influence on it, whereas the Ba River contributes little to the mainstream. The proportion of zircon age groups from the sediments of the Yellow River before and after its confluence with the Wei River shows a sharp change, indicating the great contribution of the Wei River to the Yellow River.

  • 加载中
  • [1] Molnar P, Tapponnier P. Cenozoic tectonics of Asia—effects of a continental collision: features of recent continental tectonics in asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    [2] Yin A. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 2010, 488(1-4): 293-325. doi: 10.1016/j.tecto.2009.06.002

    CrossRef Google Scholar

    [3] Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [4] Peltzer G, Tapponnier P, Zhang Z T, et al. Neogene and quaternary faulting in and along the Qinling Shan[J]. Nature, 1985, 317(6037): 500-505. doi: 10.1038/317500a0

    CrossRef Google Scholar

    [5] Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98(6): 678. doi: 10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2

    CrossRef Google Scholar

    [6] Harrison T M, Copeland P, Kidd W S F, et al. Raising tibet[J]. Science, 1992, 255(5052): 1663-1670. doi: 10.1126/science.255.5052.1663

    CrossRef Google Scholar

    [7] 胡孟春.渭河盆地的地质构造与构造地貌类型[J].地理研究, 1989, 8(4): 56-64.

    Google Scholar

    HU Mengchun. The relationship between the tectonic landforms and structures in the Weihe river basin[J]. Geographical Research, 1989, 8(4): 56-64.

    Google Scholar

    [8] 张宏卫, 邓起东.不对称盆地形成机制探讨——以渭河盆地为例[J].中国地震, 1992, 8(1): 26-35.

    Google Scholar

    ZHANG Hongwei, DENG Qidong. A stduy on the mechanism of the asymmetry basin-a case of the Weihe basin[J]. Earthquake Research in China, 1992, 8(1): 26-35.

    Google Scholar

    [9] 王建强.鄂尔多斯盆地南部中新生代演化—改造及盆山耦合关系[D].西北大学博士学位论文, 2010.http://cdmd.cnki.com.cn/article/cdmd-10697-1011088257.htm

    Google Scholar

    WANG Jianqiang. Mesozoic-cenozoic basin evolution-reforming and basin-moutain coupling in southern Ordos basin[D]. Doctoral Dissertation of Northwest University, 2010.

    Google Scholar

    [10] 王斌.渭河盆地新生代沉积演化: 盆山耦合与风尘沉积[D].南京大学博士学位论文, 2014.paperuri:(b33e7330dc27dffbd204e7e30bfafa43)

    Google Scholar

    WANG Bin. Cenozoic sedimentary evolution of the Weihe basin: Basin-orogen coupling and eolian sediments[D]. Doctoral Dissertation of Nanjing University, 2014.

    Google Scholar

    [11] Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656): 159-162. doi: 10.1038/36554

    CrossRef Google Scholar

    [12] Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2001, 172(1-2): 5-24. doi: 10.1016/S0009-2541(00)00233-3

    CrossRef Google Scholar

    [13] 闫义, 林舸, 李自安.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J].大地构造与成矿学, 2003, 27(2): 184-190. doi: 10.3969/j.issn.1001-1552.2003.02.012

    CrossRef Google Scholar

    YAN Yi, LIN Ge, LI Zi'an. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190. doi: 10.3969/j.issn.1001-1552.2003.02.012

    CrossRef Google Scholar

    [14] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    HOU Kejun, LI Yanhe, TIAN Yourong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [15] Huang S G, Zhou W J, Han X, et al. Progress on zircon U-Pb Dating technique[J]. Acta Geologica Sinica, 2014, 88(S2): 984. doi: 10.1111/1755-6724.12378_11

    CrossRef Google Scholar

    [16] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544. doi: 10.1086/629606

    CrossRef Google Scholar

    [17] 何梦颖, 郑洪波, 贾军涛.长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究[J].第四纪研究, 2013, 33(4): 656-670. doi: 10.3969/j.issn.1001-7410.2013.04.04

    CrossRef Google Scholar

    HE Mengying, ZHENG Hongbo, JIA Juntao. Detrital zircon U-Pb dating and Hf isotope of morden sediments in the Yangtze river: implications for the sediment provenance[J]. Quaternary Sciences, 2013, 33(4): 656-670. doi: 10.3969/j.issn.1001-7410.2013.04.04

    CrossRef Google Scholar

    [18] 岳保静, 廖晶.黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J].海洋地质与第四纪地质, 2016, 36(5): 109-119.

    Google Scholar

    YUE Baojing, LIAO Jing. Provenance study of Yellow river sediments by U-Pb dating of the detrital zircons[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 109-119.

    Google Scholar

    [19] 中华人民共和国水利部.中国河流泥沙公报-2015[M].北京:中国水利水电出版社, 2016.

    Google Scholar

    The Ministry of Water Resources of the People's Republic of China. Zhongguo Heliu Nisha Gongbao, 2015[M]. Beijing: China Water & Power Press, 2016.

    Google Scholar

    [20] 郭岭, 贾超超, 朱毓, 等.现代渭河西安段沉积体沉积相与岩相特征[J].沉积学报, 2015, 33(3): 543-550.

    Google Scholar

    GUO Ling, JIA Chaochao, ZHU Yu, et al. Characteristics of sedimentary facies and lithofacies of modern Weihe river in Xi'an[J]. Acta Sedimentologica Sinica, 2015, 33(3): 543-550.

    Google Scholar

    [21] 张国伟, 张宗清, 董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002

    CrossRef Google Scholar

    ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of main tectonic-lithostratigraphic units of the Qinling Orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002

    CrossRef Google Scholar

    [22] 张国伟, 孟庆任, 于在平, 等.秦岭造山带的造山过程及其动力学特征[J].中国科学D辑, 1996, 26(3): 193-200.

    Google Scholar

    ZHANG Guowei, MENG Qingren, YU Zaiping, et al. Orogenesis and dynamics of the Qinling Orogen[J]. Science in China (Series D), 1996, 39(3):225-234.

    Google Scholar

    [23] Bao Z W, Wang C Y, Zeng L J, et al. Slab break-off model for the Triassic syn-collisional granites in the Qinling orogenic belt, Central China: Zircon U-Pb age and Hf isotope constraints[J]. International Geology Review, 2015, 57(4): 492-507. doi: 10.1080/00206814.2015.1017777

    CrossRef Google Scholar

    [24] 孟庆任.秦岭的由来[J].中国科学:地球科学, 2017, 47(4): 412-420.

    Google Scholar

    MENG Qingren. Origin of the Qinling Mountains [J]. Scientia Sinica Terrae, 2017, 47(4): 412-420.

    Google Scholar

    [25] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4):1402-1428. doi: 10.1016/j.gr.2012.09.007

    CrossRef Google Scholar

    [26] Qin J F, Lai S C, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3-4): 259-276. doi: 10.1016/j.lithos.2009.03.007

    CrossRef Google Scholar

    [27] Tao W, Wang X X, Wei T, et al. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China[J]. Science in China (Series D), 2009, 52(9): 1359-1384. doi: 10.1007/s11430-009-0129-5

    CrossRef Google Scholar

    [28] Diwu C, Sun Y, Zhang H, et al. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: Constraints from detrital zircon U-Pb ages[J]. Journal of Asian Earth Sciences, 2012, 47: 107-122. doi: 10.1016/j.jseaes.2011.07.012

    CrossRef Google Scholar

    [29] Liu B X, Qi Y, Wang W, et al. Zircon U-Pb ages and O-Nd isotopic composition of basement rocks in the North Qinling Terrain, central China: evidence for provenance and evolution[J]. International Journal of Earth Sciences, 2013, 102(8): 2153-2173. doi: 10.1007/s00531-013-0912-6

    CrossRef Google Scholar

    [30] Li Y, Zhou H W, Li Q L, et al. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U-Pb geochronology[J]. Journal of Asian Earth Sciences, 2014, 92(5): 77-91.

    Google Scholar

    [31] Cao H H, Li S Z, Zhao S J, et al. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 2016, 279: 1-16. doi: 10.1016/j.precamres.2016.04.001

    CrossRef Google Scholar

    [32] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194. doi: 10.1016/j.chemgeo.2012.04.021

    CrossRef Google Scholar

    [33] 陈岳龙, 李大鹏, 周建, 等.中国西秦岭碎屑锆石U-Pb年龄及其构造意义[J].地学前缘, 2008, 15(4): 88-107. doi: 10.3321/j.issn:1005-2321.2008.04.011

    CrossRef Google Scholar

    CHEN Yuelong, LI Dapeng, ZHOU Jian, et al. U-Pb ages of zircons in western Qinling Mountain, China, and their tectonic implications[J]. Earth Science Frontiers, 2008, 15(4): 88-107. doi: 10.3321/j.issn:1005-2321.2008.04.011

    CrossRef Google Scholar

    [34] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011

    CrossRef Google Scholar

    [35] Zhu X Y, Chen F, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194-204. doi: 10.1016/j.gr.2010.12.009

    CrossRef Google Scholar

    [36] Shi Y, Yu J H, Santosh M. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19-60. doi: 10.1016/j.precamres.2013.03.001

    CrossRef Google Scholar

    [37] Nie J, Stevens T, Rittner M, et al. Loess plateau storage of northeastern tibetan plateau-derived Yellow River sediment[J]. Nature Communications, 2016, 6(1): 49-55.

    Google Scholar

    [38] 张宗清.北秦岭变质地层同位素年代研究[M].北京:地质出版社, 1994.

    Google Scholar

    ZHANG Zongqing. Isotopes Study on the Metamorphic Stratum in the North Qinling Mountains[M]. Beijing: Geological Publishing House, 1994.

    Google Scholar

    [39] Nie J S, Peng W B, Möller A, et al. Provenance of the upper Miocene-Pliocene Red Clay deposits of the Chinese loess plateau[J]. Earth and Planetary Science Letters, 2014, 407: 35-47. doi: 10.1016/j.epsl.2014.09.026

    CrossRef Google Scholar

    [40] Xie J, Yang S L, Ding Z L. Methods and application of using detrital zircons to trace the provenance of loess[J]. Science China Earth Sciences, 2012, 55(11): 1837-1846. doi: 10.1007/s11430-012-4428-x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2638) PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint