2019 Vol. 39, No. 1
Article Contents

LIU Hanyao, LIN Changsong, ZHANG Zhongtao, ZHANG Bo, JIANG Jing, TIAN Hongxun, LIU Huan. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37. doi: 10.16562/j.cnki.0256-1492.2017060201
Citation: LIU Hanyao, LIN Changsong, ZHANG Zhongtao, ZHANG Bo, JIANG Jing, TIAN Hongxun, LIU Huan. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37. doi: 10.16562/j.cnki.0256-1492.2017060201

Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems

More Information
  • Based on the seismic, well logging and paleontological data, the sequence stratigraphic evolution of the northeastern shelf margin of the Pearl River Mouth Basin and the controlling factors on depositional systems since Quaternary are studied in this paper. Quaternary depositional systems in the study area are characterized by large-scale foresets complexes, which can be further subdivided into four 3rd order sequences, in each of which lowstand, transgressive, highstand systems tracts are observed. Depositional systems recognized in the slope section include slope incised valley, NW-SE oriented unidirectional migration of shelf-margin channels, shelf margin deltas, slope fans, and high-angle progradational complexes. As sea level fell down and/or sediment supply increased, deltaic systems prograded onto shelf-margin, and formed a series of thick shelf-edge deltas and finally deposited as slope fans. Since Pleistocene, these prograding complexes have been formed from the southern Panyu Lower Uplift toward the northern Baiyun Depression. At the same time the shelf slope break migrated to the sea. Incised valley of continental shelf increased upwards and reached a peak at SB3 and SB2. The Holocene highstand delta was limited within the continental shelf after the latest transgression. The evolution of depositional systems of continental slope is mainly controlled by the combination of sea-level changes, tectonic movement, climate changes and sediment supply.

  • 加载中
  • [1] 庞雄, 陈长民, 邵磊, 等.白云运动:南海北部渐新统-中新统重大地质事件及其意义[J].地质论评, 2007, 53 (2): 145-151. doi: 10.3321/j.issn:0371-5736.2007.02.001

    CrossRef Google Scholar

    PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications[J]. Geological Review, 2007, 53 (2): 145-151. doi: 10.3321/j.issn:0371-5736.2007.02.001

    CrossRef Google Scholar

    [2] Lüdmann T, Wong H K, Kai B. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 2005, 32 (5): 215-236.

    Google Scholar

    [3] Jiang J, Shi H S, Lin C S, et al. Sequence architecture and depositional evolution of the Late Miocene to quaternary northeastern shelf margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 81: 79-97. doi: 10.1016/j.marpetgeo.2016.12.025

    CrossRef Google Scholar

    [4] Lin C S, Liu J Y, Cai S, et al. Depositional architecture and developing settings of large-scale incised valley and submarine gravity flow systems in the Yinggehai and Qiongdongnan basins, South China Sea[J]. Science Bulletin, 2001, 46 (8): 690-693. doi: 10.1007/BF03182838

    CrossRef Google Scholar

    [5] 祝彦贺, 朱伟林, 徐强, 等.珠江口盆地13.8Ma陆架边缘三角洲与陆坡深水扇的"源汇"关系[J].中南大学学报:自然科学版, 2011, 42 (12): 3827-3834.

    Google Scholar

    ZHU Yanhe, ZHU Weilin, XU Qiang, et al. Sedimentary response to shelf-edge delta and slope deep-water fan in 13.8 Ma of Miocene epoch in Pearl River Mouth Basin[J]. Journal of Central South University, 2011, 42 (12): 3827-3834.

    Google Scholar

    [6] 柳保军, 庞雄, 颜承志, 等.珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J].石油学报, 2011, 32 (2): 234-242.

    Google Scholar

    LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil and gas exploration[J]. Acta Petrolei Sinica, 2011, 32 (2): 234-242.

    Google Scholar

    [7] 吴景富, 徐强, 祝彦贺.南海白云凹陷深水区渐新世-中新世陆架边缘三角洲形成及演化[J].地球科学-中国地质大学学报, 2010, 35 (4): 681-690.

    Google Scholar

    WU Jingfu, XU Qiang, ZHU Yanhe. Generation and evolution of the shelf-edge delta in Oligocene and Miocene of Baiyun Sag in the South China Sea[J]. Earth Science, 2010, 35 (4): 681-690.

    Google Scholar

    [8] 董伟, 林畅松, 秦成岗, 等.珠江口盆地番禺低隆起韩江组高精度层序格架和沉积样式与岩性地层圈闭的发育分布[J].现代地质, 2008, 22 (5): 794-802. doi: 10.3969/j.issn.1000-8527.2008.05.014

    CrossRef Google Scholar

    DONG Wei, LIN Changsong, QIN Chenggang, et al. High Resolution Sequence framework, depositional pattern and litho-stratigraphic traps of Hanjiang Formation in Panyu Uplift, Pearl River Mouth Basin[J]. Geoscience, 2008, 22 (5): 794-802. doi: 10.3969/j.issn.1000-8527.2008.05.014

    CrossRef Google Scholar

    [9] 吴伟, 刘惟庆, 林畅松, 等.珠江口盆地白云北坡珠江组下部陆架边缘沉积演化[J].地质学报, 2014, 88 (9): 1719-1727.

    Google Scholar

    WU Wei, LIU Weixing, LIN Changsong, et al. Sedimentary evolution of the Lower Zhujiang Group continental shelf edge in the North Slope of Baiyun Sag, Pearl River Mouth Basin[J]. Acta Geologica Sinica, 2014, 88 (9): 1719-1727.

    Google Scholar

    [10] 谢利华, 林畅松, 董伟, 等.珠江口盆地番禺低隆起珠江组—韩江组沉积体系[J].石油地质与工程, 2009, 23 (2): 5-8. doi: 10.3969/j.issn.1673-8217.2009.02.002

    CrossRef Google Scholar

    XIE Lihua, LIN Changsong, DONG Wei et al. Sedimentary system of Zhujiang-Hanjiang Groupin the Panyu low uplift, Pearl River Mouth Basin[J]. Petroleum geological engineering, 2009, 23 (2): 5-8. doi: 10.3969/j.issn.1673-8217.2009.02.002

    CrossRef Google Scholar

    [11] 冯志强.南海北部地质灾害及海底工程地质条件评价[M].河海大学出版社, 1996.

    Google Scholar

    FENG Zhiqiang.Evaluation of Marine Geologic Hazards and Engineering Geological Conditions in the Northern South China Sea[M]. Hohai University Press, 1996.

    Google Scholar

    [12] 寇养琦.南海北部大陆架的古河道及其工程地质评价[J].海洋地质与第四纪地质, 1990, 10(1): 37-45.

    Google Scholar

    KOU Yangqi. Ancient River Channels in the Northern South China Sea Shelf and Engineering Geologic Significance[J]. Marine Geology & Quaternary Geology, 1990, 10(1): 37-45.

    Google Scholar

    [13] 寇养琦, 杜德莉.南海北部陆架第四纪古河道的沉积特征[J].地质学报, 1994 (3): 268-277.

    Google Scholar

    KOU Yangqi, DU Deli. Sedimentary features of shallow ancient river channels on the Northern Shelf of the South China Sea[J]. Acta Geologica Sinica, 1994 (3): 268-277.

    Google Scholar

    [14] 黄镇国, 张伟强, 蔡福祥.珠江水下三角洲[J].地理学报, 1995 (3): 206-214. doi: 10.3321/j.issn:0375-5444.1995.03.002

    CrossRef Google Scholar

    HUANG Zhenguo, ZHANG Weiqiang, CAI Fuxiang. The Submerged Zhujiang Delta[J]. Acta Geographica Sinica, 1995 (3): 206-214. doi: 10.3321/j.issn:0375-5444.1995.03.002

    CrossRef Google Scholar

    [15] 葛黄敏, 李前裕, 钟广法, 等.南海北部第四纪高分辨率地震层序地层与古环境演化[J].海洋地质与第四纪地质, 2012, 32(4): 49-60.

    Google Scholar

    GE Huangmin, LI Qianyu, ZHONG Gguangfa, et al. High resolution seismic sequence stratigraphy and paleoenvironmental evolution in the northern South China sea[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 49-60.

    Google Scholar

    [16] Zhuo, H T, Wang, Y M, Shi, H S, et al. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data[J]. Quaternary Science Reviews, 2015, 129: 128-146. doi: 10.1016/j.quascirev.2015.10.012

    CrossRef Google Scholar

    [17] Lüdmann T, Wong H K, Wang P. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea[J]. Marine Geology, 2001, 172 (3-4): 331-358. doi: 10.1016/S0025-3227(00)00129-8

    CrossRef Google Scholar

    [18] Lin C S, Jiang J, Shi H S, et al. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: responses to tectonic processes and changes in sea level[J]. Basin Research, 2018, 30(1):568-595.

    Google Scholar

    [19] Ding W, Li J, Li J, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea[J]. Marine Geophysical Research, 2013, 34 (3): 221-238.

    Google Scholar

    [20] Catuneanu O. Principles of Sequence Stratigraphy[M]. Elsevier, 2006.

    Google Scholar

    [21] 秦国权.微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用[J].海洋地质与第四纪地质, 1996, 16(4): 1-18.

    Google Scholar

    QIN Guoquan. Aplication of Micropaleonology to the sequnence stratigraphic studies of late cenozoic in the Zhujiang River Mouth basin[J]. Marine Geology & Quaternary Geology, 1996, 16(4): 1-18.

    Google Scholar

    [22] Wu H, Zhao X, Shi M, et al. A 23Myr magnetostratigraphic time framework for Site 1148, ODP Leg 184 in South China Sea and its geological implications[J]. Marine & Petroleum Geology, 2014, 58: 749-759.

    Google Scholar

    [23] Vail, P R, Mitchum, R M, Jr, et al. Seismic stratigraphy and global changes of sea level[C]//In: Payton C E (Editor). Seismic Stratigraphy-Applications to Hydrocarbon Exploration. Am. Assoc. Pet., Geol., 1977, 26: 49-212.

    Google Scholar

    [24] Sangree J B, Widmier J M, et al. Seismic stratigraphy and global changes of sea level, Part 9. Seismic interpretation of elastic depositional fades[C]//In: Payton C E (Editor). SeismicStratigraphy——Application to Hydrocarbon Exploration. Am. Assoc. Pet., Geol., 1977, 26: 83-97.

    Google Scholar

    [25] Mitchum, R M, Jr. Seismic stratigraphic expression of submarine fans[C]//In: Berg O R, Woolverton D G (Editors). Seismic Stratigraphy, Ⅱ. An Integrated Approach. Am. Assoc. Pet., Geol., 1995, 39: 117-136.

    Google Scholar

    [26] 林畅松.沉积盆地的层序和沉积充填结构及过程响应[J].沉积学报, 2009, 27 (5): 849-862.

    Google Scholar

    LIN Changsong. Sequence and depositional architecture of sedimentary basin and process responses[J]. Acta Sedimentologica Sinica, 2009, 27 (5): 849-862.

    Google Scholar

    [27] Lobo F J, Ridente D. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview[J]. Marine Geology, 2014, 352 (3): 215-247.

    Google Scholar

    [28] Osterberg E C. Late Quaternary (Marine Isotope Stages 6-1) seismic sequence stratigraphic evolution of the Otago continental shelf, New Zealand[J]. Marine Geology, 2006, 229 (3): 159-178.

    Google Scholar

    [29] Webster R. Sedimentology and Stratigraphy[J]. European Journal of Soil Science, 2010, 61 (2): 315-316.

    Google Scholar

    [30] wiesner, M G.sedimentary facies and organic matter characteristic of the northern continental margin of south China sea[C]//In: Wong H K, Ludmann T, Haft C, et al. Quaternary Sedimentation in the Molengraaff Paleo-Delta, Northern Sunda Shelf (Southern South China Sea).Tropical Deltas of Southeast Asia, 2003: 201-216.

    Google Scholar

    [31] S-Mme T O, Hellandhansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems.[J]. Basin Research, 2009, 21 (4): 361-387. doi: 10.1111/j.1365-2117.2009.00397.x

    CrossRef Google Scholar

    [32] Bilal U. Haq, Jan H, et al. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156-1167. doi: 10.1126/science.235.4793.1156

    CrossRef Google Scholar

    [33] 赵泉鸿, 翦知湣, 王吉良, 等.南海北部晚新生代氧同位素地层学[J].中国科学, 2001, 31: 800-807.

    Google Scholar

    ZHAO Quanhong, JIAN Zhimin, WANG Jiliang, et al. Neogene oxygen isotopic stratigraphy, ODP site 1148, northern South China Sea[J]. Science in China, 2001, 31: 800-807.

    Google Scholar

    [34] Zhang X H, Li Y C, Qi Z H. An approach to the formation and evolution model of South China Sea Basin[J]. Marine Geology & Quaternary Geology, 1997.

    Google Scholar

    [35] 吴时国, 刘展, 王万银, 等.东沙群岛海区晚新生代构造特征及其对弧-陆碰撞的响应[J].海洋与湖沼, 2004, 35(6):481-490. doi: 10.3321/j.issn:0029-814X.2004.06.001

    CrossRef Google Scholar

    WU ShiGuo, LIU Zhan, WANG Wanyin, et al. Late Cenozoic neotectonics in the Dongsha Islands region and its responds to collision between Chinese Continental Margin and Luzon[J]. Oceanologia et Limnologia Sinica, 2004, 35 (6): 481-490. doi: 10.3321/j.issn:0029-814X.2004.06.001

    CrossRef Google Scholar

    [36] Lin C S, Zhang Y, Sitian L I, et al. Quantitative Modelling of multiphase lithospheric stretching and deep thermal history of some Tertiary Rift Basins in Eastern China[J]. Acta Geologica Sinica, 2002, 76 (3): 324-330.

    Google Scholar

    [37] 邵磊, 李献华, 汪品先, 等.南海渐新世以来构造演化的沉积记录——ODP1148站深海沉积物中的证据[J].地球科学进展, 2004, 19 (4): 539-544. doi: 10.3321/j.issn:1001-8166.2004.04.008

    CrossRef Google Scholar

    SHAO Lei, LI Xianhua, WANG Pinxian, et al. Sedimentary record of the Tectonic evolution of the South China Sea since the Oligocene-evidence from deep sea sediments of ODP Site 1148[J]. Advance in Earth Sciences, 2004, 19 (4): 539-544. doi: 10.3321/j.issn:1001-8166.2004.04.008

    CrossRef Google Scholar

    [38] Clift P D, Hodges K V, Heslop D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 2008, 1 (12): 875-880 doi: 10.1038/ngeo351

    CrossRef Google Scholar

    [39] Clift P, Lee J I, Clark M K, et al. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea[J]. Marine Geology, 2002, 184(3-4):207-226. doi: 10.1016/S0025-3227(01)00301-2

    CrossRef Google Scholar

    [40] Wang G. Sedimentary Evidence of the Western Yunnan Plateau Uplift Since Miocene[J]. Bulletin of Mineralogy Petrology & Geochemistry, 1999.

    Google Scholar

    [41] Zheng H, Mcaulay P C, An Z, et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000, 28 (8): 715. doi: 10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2

    CrossRef Google Scholar

    [42] Peizhen Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410 (6831): 891-897. doi: 10.1038/35073504

    CrossRef Google Scholar

    [43] 黄宝琦, 成鑫荣, 翦知湣, 等.晚上新世以来南海北部上部水体结构变化及东亚季风演化[J].第四纪研究, 2004, 24 (1): 110-115. doi: 10.3321/j.issn:1001-7410.2004.01.015

    CrossRef Google Scholar

    [44] 唐松, 邵磊, 赵泉鸿.南海渐新世以来粘土矿物的演变特征及意义[J].沉积学报, 2004, 22 (2): 337-342. doi: 10.3969/j.issn.1000-0550.2004.02.021

    CrossRef Google Scholar

    TANG Song, SHAO Lei, ZHAO Quanhong. Characteristics of clay mineral in South China Sea since Oligocene and its significance[J]. Acta Sedimentologica Sinica, 2004, 22 (2): 337-342. doi: 10.3969/j.issn.1000-0550.2004.02.021

    CrossRef Google Scholar

    [45] Luo Y L, Sun X J. Vegetation evolution and its response to climatic change during 3.15-0.67 Ma in deep-sea pollen record from northern South China Sea[J]. Science Bulletin, 2013, 58 (3): 364-372. doi: 10.1007/s11434-012-5374-x

    CrossRef Google Scholar

    [46] 张玉兰.南海北部海域柱状沉积的孢粉、藻类及其古环境意义[J].热带海洋学报, 2008, 27 (6): 44-48. doi: 10.3969/j.issn.1009-5470.2008.06.008

    CrossRef Google Scholar

    ZHANG Yulan. Sporopollen and algae in Core C4 of northern South China Sea and its paleoenvironment[J]. Journal of Tropical Oceanography, 2008, 27 (6): 44-48. doi: 10.3969/j.issn.1009-5470.2008.06.008

    CrossRef Google Scholar

    [47] 汪品先, 翦知湣, 赵泉鸿, 等.南海演变与季风历史的深海证据[J].科学通报, 2003, 48 (21): 2228-2239. doi: 10.3321/j.issn:0023-074X.2003.21.005

    CrossRef Google Scholar

    WANG Pinxian, JIAN Zhimin, ZHAO Quanhong, et al. Evolution of the South China Sea and monsoon history revealed in deep-sea records[J]. Science Bulletin, 2003, 48(21):2228-2239. doi: 10.3321/j.issn:0023-074X.2003.21.005

    CrossRef Google Scholar

    [48] Zhisheng A, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times.[J]. Nature, 2001, 411 (6833): 62-67. doi: 10.1038/35075035

    CrossRef Google Scholar

    [49] 翦知湣, 汪品先, 赵泉鸿, 等.南海北部上新世晚期东亚冬季风增强的同位素和有孔虫证据[J].第四纪研究, 2001, 21 (5): 461-469. doi: 10.3321/j.issn:1001-7410.2001.05.010

    CrossRef Google Scholar

    JIANG Zhimin, WANG Pinxian, ZHAO Quanhong. Late pliocene enhanced east asian winter monsoon: evidence of isotope and foraminifers from the northern south china sea.[J]. Quaternary Sciences, 2001, 21 (5): 461-469. doi: 10.3321/j.issn:1001-7410.2001.05.010

    CrossRef Google Scholar

    [50] Meng X W, Xia P, Zheng J, et al. Evolution of the East Asian monsoon and its response to uplift of the Tibetan Plateau since 1.8 Ma recorded by major elements in sediments of the South China Sea[J]. Science Bulletin, 2011, 56 (6): 547-551. doi: 10.1007/s11434-010-4258-1

    CrossRef Google Scholar

    [51] Prell W L. Oxygen and Carbon isotope stratigraphy for the Quaternary of Hole 502B: Evidence for two modes of isotopic variability[R]. Inital Reports of Deep Sea Drilling Program 68, 1982: 455-464.

    Google Scholar

    [52] Martin, Brad, Pillans, et al. The Early-Middle Pleistocene Transition: characterization and proposed guide for the defining boundary[J]. Episodes, 2008, 31 (2): 255-259.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(5252) PDF downloads(118) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint