2017 Vol. 37, No. 6
Article Contents

LIU Xingjian, TANG Dehao, YAN Pin, GE Chendong, WANG Yanlin. CHARACTERISTICS OF AUTHIGENIC CARBONATES FROM A MEGA-POCKMARK ON THE EASTERN SIDE OF BAIYUN SAG,SOUTH CHINA SEA AND THEIR GEOLOGICAL SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 119-127. doi: 10.16562/j.cnki.0256-1492.2017.06.013
Citation: LIU Xingjian, TANG Dehao, YAN Pin, GE Chendong, WANG Yanlin. CHARACTERISTICS OF AUTHIGENIC CARBONATES FROM A MEGA-POCKMARK ON THE EASTERN SIDE OF BAIYUN SAG,SOUTH CHINA SEA AND THEIR GEOLOGICAL SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 119-127. doi: 10.16562/j.cnki.0256-1492.2017.06.013

CHARACTERISTICS OF AUTHIGENIC CARBONATES FROM A MEGA-POCKMARK ON THE EASTERN SIDE OF BAIYUN SAG,SOUTH CHINA SEA AND THEIR GEOLOGICAL SIGNIFICANCE

More Information
  • A mega-pockmark, 1 500 m in diameter and 75 m in depth, is discovered on the east side of the Baiyun Sag, the South China Sea. Many irregular nodules are collected from the mega-pockmark and most of them characterized by fresh holes and seep passages. The mineral composition, microstructures, stable carbon and oxygen isotopes (δ13C and δ18O) of the five authigenic carbonates are used to trace the fluid source and their forming environment. Mineralogical study suggests that the five carbonates are all dominated by ferrous dolomite, followed by a detrital fraction, mainly composed of quartz and feldspar. The δ13C of the five carbonates falls in the range of -24.7‰~-10.9‰, indicating a primary source of 13C-depleted thermogenic methane. The δ18O of five carbonates varies between 5.6‰~6.9‰ V-PDB, indicating that the 18O-rich fluids are derived from the decomposition of gas hydrates and/or dehydration of clay minerals at depth. Gas hydrate may have existed in the sediment of the mega-pockmark. Ferrous dolomites in authigenic carbonates are formed in sediments and subsequently exposed to the seawater, indicating that the old methane seep was related to deep oil and gas seepage in the mega-pockmark. The live tubeworms and gas plumes in the pockmark suggest that methane seep is still active nowadays.

  • 加载中
  • [1] 罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5): 33-42.

    Google Scholar

    LUO Min, WU Lushan, CHEN Duofu. Research status and progress of seabed pockmarks[J]. Marine Geology Frontiers, 2012, 28(5): 33-42.

    Google Scholar

    [2] Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1-4): 15-32. doi: 10.1016/j.margeo.2007.05.002

    CrossRef Google Scholar

    [3] Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin[J]. Marine Geology, 2006, 226(1-2): 25-40. doi: 10.1016/j.margeo.2005.09.018

    CrossRef Google Scholar

    [4] Dondurur D, Çifçi G, Drahor M G, et al. Acoustic evidence of shallow gas accumulations and active pockmarks in the ⅰzmir Gulf, Aegean sea[J]. Marine and Petroleum Geology, 2011, 28(8): 1505-1516. doi: 10.1016/j.marpetgeo.2011.05.001

    CrossRef Google Scholar

    [5] Reiche S, Hjelstuen B O, Haflidason H. High-resolution seismic stratigraphy, sedimentary processes and the origin of seabed cracks and pockmarks at Nyegga, mid-Norwegian margin[J]. Marine Geology, 2011, 284(1-4): 28-39. doi: 10.1016/j.margeo.2011.03.006

    CrossRef Google Scholar

    [6] Benjamin U, Huuse M, Hodgetts D. Canyon-confined pockmarks on the western Niger Delta slope[J]. Journal of African Earth Sciences, 2015, 107: 15-27. doi: 10.1016/j.jafrearsci.2015.03.019

    CrossRef Google Scholar

    [7] Wenau S, Spieβ V, Pape T, et al. Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin[J]. Marine and Petroleum Geology, 2017, 83: 140-157.

    Google Scholar

    [8] Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    CrossRef Google Scholar

    [9] Mazzini A, Svensen H, Hovland M, et al. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea[J]. Marine Geology, 2006, 231(1-4): 89-102. doi: 10.1016/j.margeo.2006.05.012

    CrossRef Google Scholar

    [10] Haas A, Peckmann J, Elvert M, et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan[J]. Marine Geology, 2010, 268(1-4): 129-136. doi: 10.1016/j.margeo.2009.10.027

    CrossRef Google Scholar

    [11] Hovland M, Svensen H. Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4): 15-23. doi: 10.1016/j.margeo.2005.12.005

    CrossRef Google Scholar

    [12] 冯先翠, 王伟, 王文倩, 等. 挪威海Nyegga麻坑区的甲烷成因自生碳酸盐岩[J]. 地球化学, 2015, 44(4): 348-359. doi: 10.3969/j.issn.0379-1726.2015.04.004

    CrossRef Google Scholar

    FENG Xiancui, WANG Wei, WANG Wenqian, et al. Methane-derived authigenic carbonates in Nyegga pockmarks, offshore Mid-Norway[J]. Geochimica, 2015, 44(4): 348-359. doi: 10.3969/j.issn.0379-1726.2015.04.004

    CrossRef Google Scholar

    [13] Mazzini A, Svensen H H, Planke S, et al. Pockmarks and methanogenic carbonates above the giant Troll gas field in the Norwegian North Sea[J]. Marine Geology, 2016, 373: 26-38. doi: 10.1016/j.margeo.2015.12.012

    CrossRef Google Scholar

    [14] Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism[J]. Marine and Petroleum Geology, 2010, 27(4): 748-756. doi: 10.1016/j.marpetgeo.2009.08.006

    CrossRef Google Scholar

    [15] Pierre C, Blanc-Valleron M M, Demange J, et al. Authigenic carbonates from active methane seeps offshore southwest Africa[J]. Geo-Marine Letters, 2012, 32(5-6): 501-513. doi: 10.1007/s00367-012-0295-x

    CrossRef Google Scholar

    [16] Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea)[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007

    CrossRef Google Scholar

    [17] 邸鹏飞, 黄华谷, 黄保家, 等. 莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系[J]. 热带海洋学报, 2012, 31(5): 26-36. doi: 10.3969/j.issn.1009-5470.2012.05.005

    CrossRef Google Scholar

    DI Pengfei, HUANG Huagu, HUANG Baojia, et al. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5): 26-36. doi: 10.3969/j.issn.1009-5470.2012.05.005

    CrossRef Google Scholar

    [18] Sun Q L, Wu S G, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156. doi: 10.1016/j.marpetgeo.2011.03.003

    CrossRef Google Scholar

    [19] 关永贤, 罗敏, 陈琳莹, 等. 南海西部海底巨型麻坑活动性示踪研究[J]. 地球化学, 2014, 43(6): 628-639.

    Google Scholar

    GUAN Yongxian, LUO Min, CHEN Linying, et al. Tracing study on the activity of mega-pockmarks in southwestern Xisha Uplift, South China Sea[J]. Geochimica, 2014, 43(6): 628-639.

    Google Scholar

    [20] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003

    CrossRef Google Scholar

    [21] 拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7): 2208-2222. doi: 10.6038/cjg20140716

    CrossRef Google Scholar

    BAI Yang, SONG Haibin, GUAN Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multibeam data[J]. Chinese Journal of Geophysics, 57(7): 2208-2222. doi: 10.6038/cjg20140716

    CrossRef Google Scholar

    [22] Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007

    CrossRef Google Scholar

    [23] Lu Y T, Luan X W, Lyu F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 84: 274-288. doi: 10.1016/j.marpetgeo.2017.04.005

    CrossRef Google Scholar

    [24] 何家雄, 施小斌, 夏斌, 等. 南海北部边缘盆地油气勘探现状与深水油气资源前景[J]. 地球科学进展, 2007, 22(3): 261-270. doi: 10.3321/j.issn:1001-8166.2007.03.006

    CrossRef Google Scholar

    HE Jiaxiong, SHI Xiaobin, XIA Bin, et al. The satus of the petroleum exploration in the northern South China sea and the resource potential in the deep-water areas[J]. Advances in earth science, 2007, 22(3): 261-270. doi: 10.3321/j.issn:1001-8166.2007.03.006

    CrossRef Google Scholar

    [25] 张洪涛, 张海启, 祝有海. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 2007, 34(6): 953-961. doi: 10.3969/j.issn.1000-3657.2007.06.001

    CrossRef Google Scholar

    ZHANG Hongtao, ZHANG Haiqi, ZHU Youhai. Gas hydrate investigation and research in China: present status and progress[J]. Geology in China, 2007, 34(6): 953-961. doi: 10.3969/j.issn.1000-3657.2007.06.001

    CrossRef Google Scholar

    [26] Yan P, Wang Y L, Liu J, et al. Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 88: 858-870. doi: 10.1016/j.marpetgeo.2017.09.021

    CrossRef Google Scholar

    [27] 天工. 我国海域天然气水合物试采成功[J]. 天然气工业, 2017, 37(5): 37.

    Google Scholar

    TIAN Gong. Gas hydrate in South China Sea was exploited successfully for the first time[J]. Natural Gas Industry, 2017, 37(5): 37.

    Google Scholar

    [28] 杨少坤, 林鹤鸣, 郝沪军. 珠江口盆地东部中生界海相油气勘探前景[J]. 石油学报, 2002, 23(5): 28-33. doi: 10.3321/j.issn:0253-2697.2002.05.006

    CrossRef Google Scholar

    YANG Shaokun, LIN Heming, HAO Hujun. Oil and gas exploration prospect of mesozoic in the eastern part of pearl river mouth basin[J]. Acta Petrolei Sinica, 2002, 23(5): 28-33. doi: 10.3321/j.issn:0253-2697.2002.05.006

    CrossRef Google Scholar

    [29] 阎贫, 王彦林, 郑红波. 南海北部白云凹陷-东沙岛西南海区的浅地层探测与深水沉积特点[J]. 热带海洋学报, 2011, 30(2): 115-122. doi: 10.3969/j.issn.1009-5470.2011.02.017

    CrossRef Google Scholar

    YAN Pin, WANG Yanlin, ZHENG Hongbo. Characteristics of deep water sedimentation revealed by sub-bottom profiler survey over the Baiyun Sag-Southwest Dongsha Island Waters in the northern South China Sea[J]. Journal of Tropical Oceanography, 2011, 30(2): 115-122. doi: 10.3969/j.issn.1009-5470.2011.02.017

    CrossRef Google Scholar

    [30] 阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7): 142-148. doi: 10.3969/j.issn.0253-4193.2014.07.016

    CrossRef Google Scholar

    YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of the Dongsha Islands[J]. Acta Oceanologica Sinaca, 2014, 36(7): 142-148. doi: 10.3969/j.issn.0253-4193.2014.07.016

    CrossRef Google Scholar

    [31] Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769. doi: 10.1111/sed.12202

    CrossRef Google Scholar

    [32] Rongemaille E, Bayon G, Pierre C, et al. Rare earth elements in cold seep carbonates from the Niger delta[J]. Chemical Geology, 2011, 286(3-4): 196-206. doi: 10.1016/j.chemgeo.2011.05.001

    CrossRef Google Scholar

    [33] Roberts H H, Feng D, Joye S B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2010, 57(21-23): 2040-2054. doi: 10.1016/j.dsr2.2010.09.003

    CrossRef Google Scholar

    [34] Bian Y Y, Feng D, Roberts H H, et al. Tracing the evolution of seep fluids from authigenic carbonates: Green Canyon, northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2013, 44: 71-81. doi: 10.1016/j.marpetgeo.2013.03.010

    CrossRef Google Scholar

    [35] Mazzini A, Ivanov M K, Parnell J, et al. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids[J]. Marine Geology, 2004, 212(1-4): 153-181. doi: 10.1016/j.margeo.2004.08.001

    CrossRef Google Scholar

    [36] Vanneste H, Kastner M, James R H, et al. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids[J]. Chemical Geology, 2012, 300-301: 24-39. doi: 10.1016/j.chemgeo.2012.01.006

    CrossRef Google Scholar

    [37] Han X Q, Suess E, Sahling H, et al. Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates[J]. International Journal of Earth Sciences, 2004, 93(4): 596-611. doi: 10.1007/s00531-004-0402-y

    CrossRef Google Scholar

    [38] Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159(1-4): 93-109. doi: 10.1016/S0025-3227(98)00200-X

    CrossRef Google Scholar

    [39] 韩喜球, 杨克红, 黄永样. 南海东沙东北冷泉流体的来源和性质: 来自烟囱状冷泉碳酸盐岩的证据[J]. 科学通报, 2013, 58(19): 1865-1873.

    Google Scholar

    HAN Xiqiu, YANG Kehong, HUANG Yongyang. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates[J]. Chinese Science Bulletin, 2013, 58(30): 3689-3697.

    Google Scholar

    [40] 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据[J]. 科学通报, 2006, 51(9): 1065-1072. doi: 10.3321/j.issn:0023-074X.2006.09.011

    CrossRef Google Scholar

    CHEN Zhong, YAN Wen, CHEN Muhong, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51(10): 1228-1237. doi: 10.3321/j.issn:0023-074X.2006.09.011

    CrossRef Google Scholar

    [41] Wang S H, Magalh es V H, Pinheiro L M, et al. Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes[J]. Marine and Petroleum Geology, 2015, 68: 192-205. doi: 10.1016/j.marpetgeo.2015.08.022

    CrossRef Google Scholar

    [42] Vasconcelos C, McKenzie J A, Warthmann R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33(4): 317-320. doi: 10.1130/G20992.1

    CrossRef Google Scholar

    [43] Magalh es V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012, 243-244: 155-168. doi: 10.1016/j.sedgeo.2011.10.013

    CrossRef Google Scholar

    [44] Riboulot V, Sultan N, Imbert P, et al. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling[J]. Earth and Planetary Science Letters, 2016, 434: 252-263. doi: 10.1016/j.epsl.2015.11.047

    CrossRef Google Scholar

    [45] Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies[M]//Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Dynamics. Washington D C: American Geophysical Union, 2001: 99-113.

    Google Scholar

    [46] Viola I, MagalhĀes V, Pinheiro L M, et al. Mineralogy and geochemistry of authigenic carbonates from the Gulf of Cadiz[J]. Journal of Sea Research, 2014, 93: 12-22. doi: 10.1016/j.seares.2014.04.007

    CrossRef Google Scholar

    [47] 卞友艳, 陈多福. 海底冷泉环境中的白云石(岩)研究现状[J]. 矿物岩石地球化学通报, 2014, 33(2): 238-246. doi: 10.3969/j.issn.1007-2802.2014.02.012

    CrossRef Google Scholar

    BIAN Youyan, CHEN Duofu. Research progress of dolomite in seep carbonates[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 238-246. doi: 10.3969/j.issn.1007-2802.2014.02.012

    CrossRef Google Scholar

    [48] Zhang F F, Yan C, Teng H H, et al. In situ AFM observations of Ca-Mg carbonate crystallization catalyzed by dissolved sulfide: Implications for sedimentary dolomite formation[J]. Geochimica et Cosmochimica Acta, 2013, 105: 44-55. doi: 10.1016/j.gca.2012.11.010

    CrossRef Google Scholar

    [49] Jørgensen N O. Holocene methane-derived, dolomite-cemented sandstone pillars from the Kattegat, Denmark[J]. Marine Geology, 1989, 88(1-2): 71-81. doi: 10.1016/0025-3227(89)90005-4

    CrossRef Google Scholar

    [50] Takeuchi R, Matsumoto R, Ogihara S, et al. Methane-induced dolomite “chimneys” on the Kuroshima Knoll, Ryukyu islands, Japan[J]. Journal of Geochemical Exploration, 2007, 95(1-3): 16-28. doi: 10.1016/j.gexplo.2007.05.008

    CrossRef Google Scholar

    [51] 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006

    CrossRef Google Scholar

    CHEN Zhong, YANG Huaping, HUANG Qiyu, et al. Diagenetic environment and implication of seep carbonate precipitations from the southwestern Dongsha area, South China Sea[J]. Geoscience, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006

    CrossRef Google Scholar

    [52] Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing[J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005

    CrossRef Google Scholar

    [53] Sahling H, Bohrmann G, Spiess V, et al. Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow[J]. Marine Geology, 2008, 249(3-4): 206-225. doi: 10.1016/j.margeo.2007.11.010

    CrossRef Google Scholar

    [54] Macdonald I R, Neilly J F, Guinasso N L, et al. Chemosynthetic mussels at a brine-filled pockmark in the northern gulf of Mexico[J]. Science, 1990, 248(4959): 1096-1099. doi: 10.1126/science.248.4959.1096

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2353) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint