2017 Vol. 37, No. 5
Article Contents

HUANG Guoheng, SU Zheng, XIA Meisheng, WU Daidai. STUDY ON SAND PRODUCTION IN A NATURAL GAS HYDRATE PRODUCTION WELL[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 174-183. doi: 10.16562/j.cnki.0256-1492.2017.05.018
Citation: HUANG Guoheng, SU Zheng, XIA Meisheng, WU Daidai. STUDY ON SAND PRODUCTION IN A NATURAL GAS HYDRATE PRODUCTION WELL[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 174-183. doi: 10.16562/j.cnki.0256-1492.2017.05.018

STUDY ON SAND PRODUCTION IN A NATURAL GAS HYDRATE PRODUCTION WELL

More Information
  • Natural gas hydrate has been proved significant as a kind of unconventional energy source. However, the sand production from gas hydrate-bearing deposits has remained a nightmare to the commercial development of the resource. The northern slope of the South China Sea is an important natural gas hydrate area in China. The natural gas hydrate there is distributed mainly in a scattered pattern by weakly cemented deposits and it really is urgent to study the mechanism of sand production for sustainable development of the resource. The fundamental reason of sand production is the decrease in the strength of reservoir medium, which is cemented by hydrate, and effected by the factors of hydrate saturation, pore fluid pressure, flow rate, production pressure and so on. Based on the comparison of sand production from the natural gas hydrate reservoir to the conventional oil and gas reservoir, this paper summarizes the up-to-date research results of sand production in weakly cemented sandstone reservoirs, and taking it as a reference we studied the sand production in natural gas hydrate reservoirs.

  • 加载中
  • [1] Kvenvolden K A. A primer on the geological occurrence of gas hydrate[J]. Geological Society, London, Special Publications, 1998, 137(1): 9-30. doi: 10.1144/GSL.SP.1998.137.01.02

    CrossRef Google Scholar

    [2] Liu Y, Gamwo I K. Comparison between equilibrium and kinetic models for methane hydrate dissociation[J]. Chemical Engineering Science, 2012, 69(1): 193-200. doi: 10.1016/j.ces.2011.10.020

    CrossRef Google Scholar

    [3] Sum A K, Koh C A, Sloan E D. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial and Engineering Chemistry Research, 2009, 48(16): 7457-7465. doi: 10.1021/ie900679m

    CrossRef Google Scholar

    [4] Kurihara M, Sato A, Funatsu K, et al. Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada[C]//International Oil and Gas Conference and Exhibition in China. Beijing, China: Society of Petroleum Engineers, 2010.

    Google Scholar

    [5] Hunter R B, Collett T S, Boswell R, et al. Mount elbert gas hydrate stratigraphic test well, Alaska north slope: overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015

    CrossRef Google Scholar

    [6] Kvamme B. Feasibility of simultaneous CO2 storage and CH4 production from natural gas hydrate using mixtures of CO2 and N2[J]. Canadian Journal of Chemistry, 2015, 93(8): 897-905. doi: 10.1139/cjc-2014-0501

    CrossRef Google Scholar

    [7] Terao Y, Duncan M, Hay B, et al. Deepwater methane hydrate gravel packing completion results and challenges[C]//Offshore Technology Conference 2014. Houston, Texas, USA: Offshore Technology Conference, 2014.

    Google Scholar

    [8] Yoshihiro T, Duncan M W, Hay W J, et al. Deepwater methane hydrate gravel packing completion results and challenges[C]//Offshore Technology Conference 2014. Houston, Texas: Offshore Technology Conference, 2014.

    Google Scholar

    [9] Kurihara M, Sato A, Funatsu K, et al. Analysis of 2007 and 2008 Gas Hydrate Production Tests on the Aurora/JOGMEC/NRCan Mallik 2L-38 Well Through Numerical Simulation[M]//Dallimore S R, Yamamoto K, Wright J F, et al. Scientific Results from the JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Mackenzie Delta: Natural Resources Canada, 2012.

    Google Scholar

    [10] Hancock S H, Collett T S, Dallimore S R, et al. Overview of Thermal-Stimulation Production-Test Results for the JAPE X/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well[M]//Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Ottawa: Geological Survey of Canada, 2005.

    Google Scholar

    [11] 李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43.

    Google Scholar

    LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43.

    Google Scholar

    [12] Rahmati H, Jafarpour M, Azadbakht S, et al. Review of sand production prediction models[J]. Journal of Petroleum Engineering, 2013, 2013: 864981.

    Google Scholar

    [13] 宁伏龙, 蒋国盛, 张凌, 等.影响含天然气水合物地层井壁稳定的关键因素分析[J].石油钻探技术, 2008, 36(3): 59-61. doi: 10.3969/j.issn.1001-0890.2008.03.014

    CrossRef Google Scholar

    NING Fulong, JIANG Guosheng, ZHANG Ling, et al. Analysis of key factors affecting wellbore stability in gas hydrate formations[J]. Petroleum Drilling Techniques, 2008, 36(3): 59-61. doi: 10.3969/j.issn.1001-0890.2008.03.014

    CrossRef Google Scholar

    [14] Rutqvist J, Moridis G J, Grover T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production[J]. Journal of Petroleum Science and Engineering, 2009, 67(1-2): 1-12. doi: 10.1016/j.petrol.2009.02.013

    CrossRef Google Scholar

    [15] 吴时国, 陈珊珊, 王志君, 等.大陆边缘深水区海底滑坡及其不稳定性风险评估[J].现代地质, 2008, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013

    CrossRef Google Scholar

    WU Shiguo, CHEN Shanshan, WANG Zhijun, et al. Submarine landslide and risk evaluation on Its instability in the deepwater continental margin[J]. Geoscience, 2008, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013

    CrossRef Google Scholar

    [16] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213(1-4): 379-401. doi: 10.1016/j.margeo.2004.10.015

    CrossRef Google Scholar

    [17] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. Florida: CRC Press, 2007.

    Google Scholar

    [18] 曹宇春.考虑骨架压缩效应的饱和土有效应力原理[J].施工技术, 2013, 42(S1): 7-11.

    Google Scholar

    CAO Yuchun. Effective stress principle of saturated soils in terms of skeleton compressibility[J]. Construction Technology, 2013, 42(S1): 7-11.

    Google Scholar

    [19] Kennett J, Cannariato K, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128

    CrossRef Google Scholar

    [20] 邵明娟, 张炜.海洋地质信息(天然气水合物勘查与试采专刊)[R].北京: 中国地质图书馆, 2017.

    Google Scholar

    SHAO Mingjuan, ZHANG Wei. Marine Geology Information (Natural gas hydrate exploration and test)[R]. Beijing: China Geological Library, 2017.]

    Google Scholar

    [21] Ecker C, Dvorkin J, Nur A M. Estimating the amount of gas hydrate and free gas from marine seismic data[J]. Geophysics, 2000, 65(2): 565-573. doi: 10.1190/1.1444752

    CrossRef Google Scholar

    [22] 宁伏龙.天然气水合物地层井壁稳定性研究[D].北京: 中国地质大学博士学位论文, 2005.http://cdmd.cnki.com.cn/Article/CDMD-10491-2006053409.htm

    Google Scholar

    NING Fulong. Research on wellbore stability in gas hydrate formation[D]. Beijing: Doctoral Dissertation of China University of Geosciences, 2005.

    Google Scholar

    [23] Kingston E, Clayton C, Priest J. Emily Kingston, Chris Clayton and Jeff Priest School of Civil Engineering and the Environment University of Southampton Highfield, Southampton, SO17 1BJ UNITED KINGDOM[J]. Hydrate Morphology, 2008.

    Google Scholar

    [24] Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate‐bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.

    Google Scholar

    [25] Yan R T, Wei C F. Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits[J]. International Journal of Geomechanics, 2017, 17(8): 04017032. doi: 10.1061/(ASCE)GM.1943-5622.0000914

    CrossRef Google Scholar

    [26] Hyodo M, Nakata Y, Yoshimoto N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Journal of the Japanese Geotechnical Society, 2005, 45(1): 75-85.

    Google Scholar

    [27] 魏厚振, 颜荣涛, 陈盼, 等.不同水合物含量含二氧化碳水合物砂三轴试验研究[J].岩土力学, 2011, 32(S2): 198-203.

    Google Scholar

    WEI Houzhen, YAN Rongtao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203.

    Google Scholar

    [28] Grozic J, Ghiassian H. Undrained shear strength of methane hydrate-bearing sand; preliminary laboratory results[C]//Proceeding of 6th Canadian Permafrost Conference and 63rd Canadian Geotechnical Conference. Calgary, 2010.

    Google Scholar

    [29] Masui A, Haneda H, Ogata Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers, 2005.

    Google Scholar

    [30] 印兴耀, 刘欣欣, 曹丹平.基于Biot相洽理论的致密砂岩弹性参数计算方法[J].石油物探, 2013, 52(5): 445-451. doi: 10.3969/j.issn.1000-1441.2013.05.001

    CrossRef Google Scholar

    YIN Xingyao, LIU Xinxin, CAO Danping. Elastic parameters calculation for tight sand reservoir based on Biot-consistent theory[J]. Geophysical Prospecting for Petroleum, 2013, 52(5): 445-451. doi: 10.3969/j.issn.1000-1441.2013.05.001

    CrossRef Google Scholar

    [31] Vaziri H H, Nouri A, Hovem K A, et al. Computation of sand production in water injectors[J]. SPE Production and Operations, 2008, 23(4): 518-524. doi: 10.2118/107695-PA

    CrossRef Google Scholar

    [32] 徐守余, 王宁.油层出砂机理研究综述[J].新疆地质, 2007(3): 283-286. doi: 10.3969/j.issn.1000-8845.2007.03.011

    CrossRef Google Scholar

    XU Shouyu, WANG Ning. Research on reservoir sand production mechanism[J]. Xinjiang Geology, 2007(3): 283-286. doi: 10.3969/j.issn.1000-8845.2007.03.011

    CrossRef Google Scholar

    [33] Wu B L, Tan C P, Lu N. Effect of water-cut on sand production-an experimental study[J]. SPE Production and Operations, 2006, 21(3): 349-356. doi: 10.2118/92715-PA

    CrossRef Google Scholar

    [34] Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. doi: 10.1016/j.energy.2015.08.092

    CrossRef Google Scholar

    [35] Konno Y, Masuda Y, Akamine K, et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion and Management, 2016, 108: 439-445. doi: 10.1016/j.enconman.2015.11.030

    CrossRef Google Scholar

    [36] Jin G R, Xu T F, Xin X, et al. Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 497-508. doi: 10.1016/j.jngse.2016.05.047

    CrossRef Google Scholar

    [37] 沈海超, 程远方, 胡晓庆.天然气水合物藏降压开采近井储层稳定性数值模拟[J].石油钻探技术, 2012, 40(2): 76-81. doi: 10.3969/j.issn.1001-0890.2012.02.015

    CrossRef Google Scholar

    SHEN Haichao, CHENG Yuanfang, HU Xiaoqing. Numerical Simulation of near wellbore reservoir stability during gas hydrate production by depressurization[J]. Petroleum Drilling Techniques, 2012, 40(2): 76-81. doi: 10.3969/j.issn.1001-0890.2012.02.015

    CrossRef Google Scholar

    [38] 肖钢, 白玉湖, 董锦.天然气水合物综论[M].北京:高等教育出版社, 2012: 156.

    Google Scholar

    XIAO Gang, BAI Yuhu, DONG Jin. A Comprehensive Review of Natural Gas Hydrates[M]. Beijing: Higher Education Press, 2012.

    Google Scholar

    [39] 何湘清.弱胶结砂岩油藏出砂机理研究[D].成都: 西南石油学院博士学位论文, 2002.http://cdmd.cnki.com.cn/Article/CDMD-10615-2003051292.htm

    Google Scholar

    HE Xiangqing. Study on the mechanism of sand production for weakly consolidated sand formation[D]. Chengdu: Doctoral Dissertation of Southwest Petroleum University, 2002.

    Google Scholar

    [40] Coates G R, Denoo S. Mechanical properties program using borehole analysis and Mohr's circle[C]//SPWLA 22nd Annual Logging Symposium. Mexico: Society of Petrophysicists and Well-Log Analysts, 1981.

    Google Scholar

    [41] Nordgren R P. Strength of well completions[C]//The 18th U.S. Symposium on Rock Mechanics (USRMS). Golden, Colorado: American Rock Mechanics Association, 1977.

    Google Scholar

    [42] Morita N, Whitfill D L, Massie I, et al. Realistic sand-production prediction: Numerical Approach[J]. SPE Production Engineering, 1989, 4(1): 15-24.

    Google Scholar

    [43] Rahmati H, Nouri A, Vaziri H, et al. Validation of predicted cumulative sand and sand rate against physical-model test[J]. Journal of Canadian Petroleum Technology, 2012, 51(5): 403-410. doi: 10.2118/157950-PA

    CrossRef Google Scholar

    [44] Morita N, Whitfill D L, Fedde O P, et al. Parametric study of sand-production prediction: analytical approach[J]. SPE Production Engineering, 1989, 4(1): 25-33.

    Google Scholar

    [45] Nouri A, Kuru E, Vaziri H. Elastoplastic modelling of sand production using fracture energy regularization method[J]. Journal of Canadian Petroleum Technology, 2009, 48(4): 64-71. doi: 10.2118/09-04-64

    CrossRef Google Scholar

    [46] Jafarpour M, Rahmati H, Azadbakht S, et al. Determination of mobilized strength properties of degrading sandstone[J]. Soils and Foundations, 2012, 52(4): 658-667. doi: 10.1016/j.sandf.2012.07.007

    CrossRef Google Scholar

    [47] 张旭辉, 王淑云, 李清平, 等.天然气水合物沉积物力学性质的试验研究[J].岩土力学, 2010, 31(10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007

    CrossRef Google Scholar

    ZHANG Xuhui, WANG Shuyun, LI Qingping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007

    CrossRef Google Scholar

    [48] Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American Mineralogist, 2015, 89(8): 1221-1227.

    Google Scholar

    [49] Willson S M, Moschovidis Z A, Cameron J R, et al. New model for predicting the rate of sand production[C]//SPE/ISRM Rock Mechanics Conference. Irving, Texas: Society of Petroleum Engineers, 2002.

    Google Scholar

    [50] Detournay C. Numerical modeling of the slit mode of cavity evolution associated with sand production[J]. SPE Journal, 2009, 14(4): 797-804. doi: 10.2118/116168-PA

    CrossRef Google Scholar

    [51] 蒋官澄, 毕彩丰, 史源清.疏松砂岩油藏出砂状况模拟技术研究[J].中国石油大学学报:自然科学版, 2005, 29(4): 64-67.

    Google Scholar

    JIANG Guancheng, BI Caifeng, SHI Yuanqing. Study on simulating sand production in unconsolidated sandstone reservoir[J]. Journal of China University of Petroleum: Edition of Natural science, 2005, 29(4): 64-67.

    Google Scholar

    [52] 吴建平, 孙辉, 高斌, 等.低渗透油藏出砂机理研究——以雁木西油田为例[J].油气地质与采收率, 2003, 10(6): 70-71. doi: 10.3969/j.issn.1009-9603.2003.06.025

    CrossRef Google Scholar

    WU Jianping, SUN Hui, GAO Bin, et al. Study on sanding mechanism in low permeability oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(6): 70-71. doi: 10.3969/j.issn.1009-9603.2003.06.025

    CrossRef Google Scholar

    [53] Hall C D Jr, Harrisberger W H. Stability of sand arches: a key to sand control[J]. Journal of Petroleum Technology, 1970, 22(7): 820-829.

    Google Scholar

    [54] 张建国, 程远方.砂拱及其稳定模型的推导及验证[J].石油钻探技术, 1999, 27(1): 40-42. doi: 10.3969/j.issn.1001-0890.1999.01.017

    CrossRef Google Scholar

    ZHANG Jianguo, CHENG Yuanfang. Sand arch stability model and its verification[J]. Petroleum Drilling Techniques, 1999, 27(1): 40-42. doi: 10.3969/j.issn.1001-0890.1999.01.017

    CrossRef Google Scholar

    [55] Bratli R K, Risnes R. Stability and failure of sand arches[J]. Society of Petroleum Engineers Journal, 1981, 21(2): 236-248. doi: 10.2118/8427-PA

    CrossRef Google Scholar

    [56] Risnes R, Bratli R K, Horsrud P. Sand stresses around a wellbore[J]. Society of Petroleum Engineers Journal, 1982, 22(6): 883-898. doi: 10.2118/9650-PA

    CrossRef Google Scholar

    [57] Jing LR, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications[M]. Rotterdam: Elsevier, 2007.

    Google Scholar

    [58] Li L, Papamichos E, Cerasi P. Investigation of Sand Production Mechanisms Using DEM with Fluid Flow[M]//Van Cotthem A, Charlier R, Thimus J F, et al. Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics. Liège, Belgium: Taylor and Francis, 2006: 67-69.

    Google Scholar

    [59] Preece D S, Jensen R P, Perkins E D, et al. Sand production modeling using superquadric discrete elements and coupling of fluid flow and particle motion[C]//Vail Rocks 1999, The 37th U.S. Symposium on Rock Mechanics (USRMS). Vail, Colorado: American Rock Mechanics Association, 1999.

    Google Scholar

    [60] Li L, Holt R M. Particle Scale Reservoir Mechanics[J]. Oil and Gas Science and Technology, 2002, 57(5): 525-538. doi: 10.2516/ogst:2002035

    CrossRef Google Scholar

    [61] 刘先珊, 许明.基于柱坐标系的油井出砂三维数值模型设计与研究[J].岩土工程学报, 2013, 35(5): 871-878.

    Google Scholar

    LIU Xianshan, XU Ming. 3-Dimensional numerical model for sand production in oil wellbore based on cylindrical coordinate system[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 871-878.

    Google Scholar

    [62] 蒋明镜, 彭镝, 申志福, 等.深海能源土剪切带形成机理离散元分析[J].岩土工程学报, 2014, 36(9): 1624-1630.

    Google Scholar

    JIANG Mingjing, PENG Di, SHEN Zhifu, et al. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630.

    Google Scholar

    [63] Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009

    CrossRef Google Scholar

    [64] 程远方, 沈海超, 李令东, 等.天然气水合物藏物性参数综合动态模型的建立及应用[J].石油学报, 2011, 32(2): 320-323.

    Google Scholar

    CHENG Yuanfang, SHEN Haichao, LI Lingdong, et al. Comprehensive and dynamical modeling for physical parameters of natural gas hydrate reservoirs and its application[J]. Acta Petrolei Sinica, 2011, 32(2): 320-323.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(2149) PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint