Citation: | YU Junhui, YAN Pin, ZHENG Hongbo, WANG Yanlin, ZHAO Xu. IMAGING OF REFLECTION MOHO IN THE SOUTHWEST SUB-BASIN OF SOUTH CHINA SEA AND ITS GEOLOGICAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 75-81. doi: 10.16562/j.cnki.0256-1492.2017.02.008 |
Deep crust structure is important to understand the dynamic origin of a marginal sea basin. However, reflection Moho has been poorly imaged in the Southwest Sub-basin of the South China Sea so far. So we reprocessed a portion of the seismic line NH973-1, which was collected with a 6 km streamer, to improve the Moho imaging. This data is rich of peg-leg multiples, thus the Moho is masked. For this, Parabolic Radon transform filtering is firstly applied to suppress the peg-leg multiples to get a initial velocity of the deep reflections. Then, velocity filtering and inner muting are carried out to further attenuate the multiples. Consequently, peg-leg multiples are attenuated effectively, and the discontinuous strong reflections, likely Moho, appear clearly. The interpreted crust (except sediments) is about 2.3 to 3.9 km thick, which is different from the normal oceanic crust, but more like the crust created by tectonic dominated seafloor spreading.
[1] | 丘学林, 赵明辉, 敖威, 等.南海西南次海盆与南沙地块的OBS探测和地壳结构[J].地球物理学报, 2011, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012 QIU Xuelin, ZHAO Minghui, AO Wei, et al. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012 |
[2] | 赵长煜, 宋海斌, 李家彪, 等.南海西南次海盆NH973-1测线地震解释[J].地球物理学报, 2011, 54(12): 3258-3268. doi: 10.3969/j.issn.0001-5733.2011.12.024 ZHAO Changyu, SONG Haibin, LI Jiabiao, et al. Tectonic and seismic interpretation of line NH973-1 along southwest sub-basin in South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3258-3268. doi: 10.3969/j.issn.0001-5733.2011.12.024 |
[3] | Li J B, Ding W W, Wu Z Y, et al. The propagation of seafloor spreading in the SW subbasin, South China Sea[J]. Chinese Science Bulletin, 2012, 57(24): 3182-3191. doi: 10.1007/s11434-012-5329-2 |
[4] | Pichot T, Delescluse M, Chamot-Rooke N, et al. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data[J]. Marine and Petroleum Geology, 2014, 58: 627-643. doi: 10.1016/j.marpetgeo.2013.10.008 |
[5] | Song T R, Li C F. Rifting to drifting transition of the Southwest Subbasin of the South China Sea[J]. Mar. Geophys Res., 2015, 36: 167-185. doi: 10.1007/s11001-015-9253-0 |
[6] | Ding W W, Li J B, Clift D, et al. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349[J]. Journal of Asian Earth Sciences, 2016, 115: 97-113. doi: 10.1016/j.jseaes.2015.09.013 |
[7] | 吕川川, 郝天珧, 丘学林, 等.南海西南次海盆北缘海底地震仪测线深部地壳结构研究[J].地球物理学报, 2011, 54(12): 3129-3138. Lü doi: 10.3969/j.issn.0001-5733.2011.12.013 Chuanchuan, HAO Tianyao, QIU Xuelin, et al. A study on the deep structure of the northern part of Southwest sub-basin from ocean bottom seismic data, South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3129-3138. doi: 10.3969/j.issn.0001-5733.2011.12.013 |
[8] | 王彦林, 阎贫.深地震探测的分辨率分析—以南海北部OBS数据为例[J].地球物理学报, 2009, 52(9): 2282-2290. doi: 10.3969/j.issn.0001-5733.2009.09.012 WANG Yanlin, YAN Pin. Lateral resolution analysis of deep crustal sounding: A case study on the data from ocean bottom seismometers in the northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(9): 2282-2290. doi: 10.3969/j.issn.0001-5733.2009.09.012 |
[9] |
Wessel P, Smith W H F. New, improved version of generic mapping tools released[C]. EOS Transactions AGU, 1998, 79(47): 579. |
[10] | Braitenberg C, Wienecke S, and Wang Y. Basement structures from satellite-derived gravity field: South China Sea ridge[J]. J. Geophys. Res., 2006, 111, B05407, doi:10.1029/2005JB003938. |
[11] | Tsuji T, Nakamura Y, Tokuyama H, et al. Oceanic crust and Moho of the Pacific Plate in the eastern Ogasawara Plateau region[J]. Island Arc, 2007, 16: 361-373. doi: 10.1111/j.1440-1738.2007.00589.x |
[12] | Aghaei O, Nedimovic M R, Carton H, et al. Crustal thickness and Moho character of the fast-spreading East Pacific Rise from 9°42′N to 9°57′N from poststack-migrated 3-D MCS data[J]. Geochemistry Geophysics Geosystems, 2014, 15: 634-657, doi:10.1002/2013GC005069. |
[13] | Schroeder T, Cheadle M, Dick H. Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: A structural synthesis of ODP Leg 209[J]. Geochemistry Geophysics Geosystems, 2007, 8(6): 1-16. |
[14] | Cannat M, Sauter D, Mendel V, et al. Models of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 2006, 34(7): 605-608. doi: 10.1130/G22486.1 |
[15] | Hopper J R, Funck T, Tucholke B E, et al. Continental breakup and the onset of ultraslow seafloor spreading off Flemish Cao on the Newfoundland rifted margin[J]. Geology, 2004, 32(1): 93-96. |
Location of the Southwest sub-basin and the NH973-1 seismic survey line
Flowchart of reflection Moho imaging
CDP gather 5000 (a) and it's velocity spectrum (b) before peg-leg multiples suppression
CDP gather 5000 (a) and it's velocity spectrum (b) after parabolic Radon transform filtering
CDP gather 5000 (a) and it's velocity spectrum (b) after velocity filtering and inner muting
Comparison of the AB segment (see Fig. 1 for location) of line NH973-1 processed by (a) PRO-TECH, CNOOC; (b) This study
Comparison of the CD segment (see Fig. 1 for location) of line NH973-1 processed by (a) PRO-TECH, CNOOC; (b) This study