2017 Vol. 37, No. 2
Article Contents

ZHANG Xianrong, SUN Zhilei, WEI Helong, ZHANG Xilin, WANG Libo. MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003
Citation: ZHANG Xianrong, SUN Zhilei, WEI Helong, ZHANG Xilin, WANG Libo. MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003

MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS

More Information
  • Authigenic pyrite is widespread in marine sediments as a typical mineral for study of diagenesis and microbioactivities, and the mineralogy, geochemistry and isotopic composition of the mineral are all closely related to the deposition environment. It is not only useful for reconstruction of the evolutionary history of the depositional and diagenetic environment, but can also provide reliable information for exploration of offshore oil and submarine gas hydrate. In this article, we summarized and reviewed the authigenic pyrite formation mechanism, Fe-S isotope fractionation, biogeochemical processes and it relationship with the cold seep system. Upon the basis, we also bring up some focal questions associated with authigenic pyrite, especially the connection with the dynamic changes of gas hydrate, for discussion. The aim of this paper is to deepen the understanding of precipitation and diagenesis of the authigenetic pyrite and its implications for sedimentation environment, know more about the microbial catalysis factor and the significance of cold seep leakage to authigenic pyrite generation.

  • 加载中
  • [1] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fulled by methane from cold seep[J]. Nature Geoscience, 2013, 6: 725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [2] Sassen R, Roberts H H, Aharon P, et al. Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope[J]. Organic Geochemistry, 1993, 20: 77-89. doi: 10.1016/0146-6380(93)90083-N

    CrossRef Google Scholar

    [3] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the north western Black Sea[J]. Marine Geology, 2001, 177: 129-150. doi: 10.1016/S0025-3227(01)00128-1

    CrossRef Google Scholar

    [4] Felden J, Lichtschlag A, Wenzhöfer F, et al. Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan) [J]. Biogeosciences, 2013, 10: 335-370. doi: 10.5194/bgd-10-335-2013

    CrossRef Google Scholar

    [5] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103: 1889-1916. doi: 10.1007/s00531-014-1010-0

    CrossRef Google Scholar

    [6] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626. doi: 10.1038/35036572

    CrossRef Google Scholar

    [7] Suess E. The evolution of an idea; from avoiding gas hydrates to actively drilling for them[J]. Joides Journal, 2002, 30: 45-50.

    Google Scholar

    [8] Sun Z l, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep-Sea ResearchⅠ, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    CrossRef Google Scholar

    [9] Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites[J]. Earth Planetary Science Letter, 2002, 203: 165-180. doi: 10.1016/S0012-821X(02)00830-0

    CrossRef Google Scholar

    [10] Torres M E, Bohrmann G, Dubé T E, et al. Formation of modern Paleozoic stratiform barite at cold methane seeps on continental margins[J]. Geology, 2003, 31: 897-900. doi: 10.1130/G19652.1

    CrossRef Google Scholar

    [11] Wang J S, Suess E, Rickert D. Authigenic gypsum found in gas hydrate associated sediments from Hydrate Ridge, the eastern North Pacific[J]. Science in China Serries D Earth Science, 2004, 47: 280-288. doi: 10.1360/02YD0069

    CrossRef Google Scholar

    [12] Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope[J]. Earth Planetary Science Letter, 2011, 309: 89-99.

    Google Scholar

    [13] Neretin L N, Bottcher M E, Jørgensen B B. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J]. Geochimica et Cosmochima Acta, 2004, 68: 2081-2093. doi: 10.1016/S0016-7037(03)00450-2

    CrossRef Google Scholar

    [14] Sassen R, Roberts H H, Carneyc R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes[J]. Chemical Geology, 2004, 205: 195-217. doi: 10.1016/j.chemgeo.2003.12.032

    CrossRef Google Scholar

    [15] Hallbauer D K. The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter uranium and carbonaceous matter mineral deposits of south Africa[J]. Mineral Deposits of Southern Africa, 1986, 12: 731-752.

    Google Scholar

    [16] Perry K A, Pedersen T F. Sulphur speciation and pyrite formation in meromictic ex-fjords[J]. Geochimicaet Cosmochimica Acta, 1993, 57: 4405-4418. doi: 10.1016/0016-7037(93)90491-E

    CrossRef Google Scholar

    [17] Lewicka-Szczebak D, Trojanowska A, et al. Sulphur isotope mass balance of dissolved sulphate ion in a fresh water dam reservoir[J]. Environmental Chemistry Letters, 2008, 6: 169-173. doi: 10.1007/s10311-007-0120-3

    CrossRef Google Scholar

    [18] Chang H J, Chu X L, Huang J, et al. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China) [J]. Geochimica et Cosmochimica Acta, 2009, 73: A208-A208.

    Google Scholar

    [19] Ostwald J, England B M. The relationship between euhedral and framboidal pyrite in base metal sulfide ores[J]. Mineralogical Magazine, 1979, 43: 297-300. doi: 10.1180/minmag.1979.043.326.13

    CrossRef Google Scholar

    [20] Sapota T. Morphology, internal structure and chemical composition of oxidized pyrite framboids from sediments of Lake Baikal, Siberia[J]. Neues Jahrbuch Für Mineralogie A bhandlungen, 2005, 181: 111-123.

    Google Scholar

    [21] Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society of London, 1985, 315: 25-38. doi: 10.1098/rsta.1985.0027

    CrossRef Google Scholar

    [22] 李安春, 陈丽蓉, 申顺喜, 等.南黄海中部H-106柱状沉积物中自生黄铁矿的研究[J].海洋科学集刊, 1993, 34: 79-86.

    Google Scholar

    LI Anchun, CHEN Lirong, SHEN Huang, et al. Study on the uthigenic pyrite in the core H-106 form the central south Yellow Sea [J]. Study Marine Sinica, 1993, 34: 79-86.

    Google Scholar

    [23] 初凤友, 陈丽蓉, 申顺喜, 等.南黄海沉积物中自生黄铁矿的形态标型研究[J].海洋与湖沼, 1994, 25: 461-467. doi: 10.3321/j.issn:0029-814X.1994.05.001

    CrossRef Google Scholar

    CHU Fengyou, CHEN Lirong, SHEN Shunxi, et al. Morphological features of authigenic pyrite from south Yellow Sea sediments [J]. Oceanologia et Loimnologia Sinica, 1994, 25: 461-467. doi: 10.3321/j.issn:0029-814X.1994.05.001

    CrossRef Google Scholar

    [24] Schieber J. Sedimentary pyrite: A window into the microbial past[J]. Geology, 2002, 30: 531-534. doi: 10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2

    CrossRef Google Scholar

    [25] Rasmussen B. Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Gas shales[J]. Geology, 2005, 33: 497-500. doi: 10.1130/G21316.1

    CrossRef Google Scholar

    [26] Chen D F, Feng D, Su Z. Pyrite crystallization in seep carbonates at gas vent and hydrate site[J]. Materials Science and Engineering C, 2006, 26: 602-605. doi: 10.1016/j.msec.2005.08.037

    CrossRef Google Scholar

    [27] Archer C, Vance D. Coupled Fe and S isotope evidence for Archean microbial Fe3+ and sulfate reduction[J]. Geology, 2006, 34: 153-156. doi: 10.1130/G22067.1

    CrossRef Google Scholar

    [28] Berner R A. Sedimentary pyrite formation: an update[J]. Geochima et Cosmochima Acta, 1984, 48: 605-615. doi: 10.1016/0016-7037(84)90089-9

    CrossRef Google Scholar

    [29] Jørgensen B B, Bottcher M E, Luschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68: 2095-2118. doi: 10.1016/j.gca.2003.07.017

    CrossRef Google Scholar

    [30] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297: 1013-1015. doi: 10.1126/science.1072502

    CrossRef Google Scholar

    [31] Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24: 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    CrossRef Google Scholar

    [32] Borowski W S, Paull C K, Ussler Ⅲ W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159: 131-154. doi: 10.1016/S0025-3227(99)00004-3

    CrossRef Google Scholar

    [33] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161: 291-314. doi: 10.1016/S0009-2541(99)00092-3

    CrossRef Google Scholar

    [34] Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge; offshore southeastern North America. Proceeding of the Ocean Drilling Programe[J]. Scientific Results, 2000, 164: 301-312.

    Google Scholar

    [35] 刘坚, 陆红锋, 廖志良, 等.东沙海域浅层沉积物硫化物分布特征及其与天然气水合物的关系[J].地学前缘, 2005, 12(3): 258-262. doi: 10.3321/j.issn:1005-2321.2005.03.028

    CrossRef Google Scholar

    LIU jian, LU Hong feng, LIAO zhiliang, et al. Distribution in sulfides in shallow sediments in dongsha areas, South china Seas and its relationship to gas hydrates [J]. Earth Science Frontiers, 2005, 12(3): 258-262. doi: 10.3321/j.issn:1005-2321.2005.03.028

    CrossRef Google Scholar

    [36] Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159: 93-109. doi: 10.1016/S0025-3227(98)00200-X

    CrossRef Google Scholar

    [37] Novosel L, Spence G D, Hyndman R D. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology, 2005, 216: 265-274. doi: 10.1016/j.margeo.2005.02.027

    CrossRef Google Scholar

    [38] 陈忠, 颜文, 陈木宏, 等.南沙海槽表层沉积自生石膏一黄铁矿组合的成因及其对天然气渗漏的指示意义[J].海洋地质与第四纪地质, 2007, 27(2): 91-100.

    Google Scholar

    CHEN Zhong, YAN Wen, CHEN Muhong, et al.Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in Nansha Trough, South China Sea [J]. Marine Geology and Quaternary Geology, 2007, 27(2): 91-100.

    Google Scholar

    [39] Wang J S, Chen Q, Wei Q, et al. Authigenic pyrites and their stable sulfur isotopes in sediments from IODP 311 on Cascadia margin, Northeastern Pacific[C]//In: Proceedings of the 6th International conference on Gas hydrates (ICGH2008), Vancouver, British Columbia, Canada, 2008.

    Google Scholar

    [40] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions[J]. Geochimica et Cosmochima Acta, 1996, 60: 3897-3912. doi: 10.1016/0016-7037(96)00209-8

    CrossRef Google Scholar

    [41] Zhang M, Konishi H, Sun X M, et al. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea[J]. Journal of Asian Earth Sciences, 2014, 92: 293-301. doi: 10.1016/j.jseaes.2014.05.004

    CrossRef Google Scholar

    [42] Zhang M, Sun X M, Xu L, et al. Nano-sized graphitic carbon in authigenic tube pyrites from offshore southwest Taiwan, South China Sea, and its implication for tracing gas hydrate[J]. Chinese Science Bullentin, 2011, 56: 2037-2043. doi: 10.1007/s11434-011-4527-7

    CrossRef Google Scholar

    [43] Thamdrup B, Finster K, Hansen J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1993, 59: 101-108.

    Google Scholar

    [44] Canfield D E, Olesen CA, Cox R P. Temperature and its control of isotope fractionation by a sulfate reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2006, 70: 548-561. doi: 10.1016/j.gca.2005.10.028

    CrossRef Google Scholar

    [45] 杨雪英, 龚一鸣.莓状黄铁矿:环境与生命的示踪计[J].地球科学-中国地质大学学报, 2011, 36(4): 643-658.

    Google Scholar

    YANG Xueying, GONG Yiming. Pyrite Framboid: Indicator of Environments and Life [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(4):643-658.

    Google Scholar

    [46] Bottcher M E, Lepland A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: evidence from stable isotopes and pyrite textures[J]. Journal of Marine Systems, 2000, 25: 299-312. doi: 10.1016/S0924-7963(00)00023-3

    CrossRef Google Scholar

    [47] Aharon P, Fu B. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep water Gulf of Mexico[J]. Geochimica et Cosmochima Acta, 2000, 2: 233-246.

    Google Scholar

    [48] 蒲晓强, 钟少军, 于雯泉, 等.南海北部陆坡NH-1孔沉积物中自生硫化物及其硫同位素对深部甲烷和水合物存在的指示[J].科学通报, 2006, 51(24): 2874-2880. doi: 10.3321/j.issn:0023-074X.2006.24.011

    CrossRef Google Scholar

    PU Xiaoqiang, ZHONG Shaojun, YU Wenquan, et al.The characteristic of authigenic sulfides and sulfur isotope of core NH1 and its implycation for methane hydrate in Northern south China sea slope[J]. Chinese Sinica Bulletin, 2006, 51(24): 2874-2880. doi: 10.3321/j.issn:0023-074X.2006.24.011

    CrossRef Google Scholar

    [49] 陈祈, 王家生, 李清, 等.海洋天然气水合物系统硫同位素研究进展[J].现代地质, 2007, 21(1): 111-115. doi: 10.3969/j.issn.1000-8527.2007.01.014

    CrossRef Google Scholar

    CHEN Qi, WANG Jiasheng, LI Qing, et al. Research progresses of sulfur isotope in marine gas hydrate geological system[J]. Geosince, 2007, 21(1): 111-115. doi: 10.3969/j.issn.1000-8527.2007.01.014

    CrossRef Google Scholar

    [50] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record[J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    CrossRef Google Scholar

    [51] Guilbaud R, Butler Ⅰ B, Ellam R M. Abiotic pyrite formation produces a large Fe isotope fractionation[J]. Science, 2011, 332: 1548-1551. doi: 10.1126/science.1202924

    CrossRef Google Scholar

    [52] Raiswell R, Canfield D. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1: 1-2. doi: 10.7185/geochempersp.1.1

    CrossRef Google Scholar

    [53] Busigny V, Planavsky N J, Jezequela D, et al. Iron isotopes in an Archean ocean analogue[J]. Geochimica et Cosmochima Acta, 2014, 133: 443-462. doi: 10.1016/j.gca.2014.03.004

    CrossRef Google Scholar

    [54] Morse J W. Interactions of trace metals with authigenic sulfide minerals-implications for their bioavailability[J]. Marine Chemistry, 1994, 46: 1-6. doi: 10.1016/0304-4203(94)90040-X

    CrossRef Google Scholar

    [55] Johnson C M, Beard B L. Biogeochemical Cycling of Iron Isotopes[J]. Science, 2005, 309: 1025-1027. doi: 10.1126/science.1112552

    CrossRef Google Scholar

    [56] Matthews A, Bell M, Helen S, et al. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, Southern England) [J]. Geochimica et Cosmochimica Acta, 2004, 68: 3107-3123. doi: 10.1016/j.gca.2004.01.019

    CrossRef Google Scholar

    [57] Severmann S, Johnsona C M, Bearda B L, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2006-2022. doi: 10.1016/j.gca.2006.01.007

    CrossRef Google Scholar

    [58] Canfield D E, Jorgensen B B, Fossing H, et al. Pathways of organic-carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113: 27-40. doi: 10.1016/0025-3227(93)90147-N

    CrossRef Google Scholar

    [59] 张美, 孙晓明, 徐莉, 等.南海东北部陆坡HD196A站位柱状沉积物中自生黄铁矿S、Fe同位素特征及其意义[J].中国地球物理, 2011, 26: 970.

    Google Scholar

    ZHANG Mei, SUN Xiaoming, XU Li, et al. Chearateristic of surfer and iron isotope of authigenic pyrite in sediment core from site HD19A6, Northeastern South China Sea and their significances[J] Chinese Geophysical, 2011, 26: 970.

    Google Scholar

    [60] Severmann S, Lyons T W, Anbar A, et al. Modern iron isotope perspective on Fe shuttling in the Archean and the redox evolution of ancient oceans[J]. Geology, 2008, 36: 487-490. doi: 10.1130/G24670A.1

    CrossRef Google Scholar

    [61] Lim Y C, Lin S, Yang T F, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J]. Marine Petrol Geology, 2011, 28: 1829-1837. doi: 10.1016/j.marpetgeo.2011.04.004

    CrossRef Google Scholar

    [62] Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7: 657-661. doi: 10.1038/ngeo2232

    CrossRef Google Scholar

    [63] 陆红锋, 陈芳, 廖志良, 等.南海东北部HD196A岩心的自生条状黄铁矿[J].地质学报, 2007, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010

    CrossRef Google Scholar

    LU Hongfeng, CHEN Fang, LIAO Zhiliang, et al. Authigenic Pyrite Rods from the Core HD196A in the Northeastern South China Sea[J]. Acta Geologica Sinica, 2007, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(2883) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint