2017 Vol. 37, No. 1
Article Contents

ZHANG Hui, YANG Rui, KUANG Zenggui, HUANG Li, YAN Pin. MATHEMATICAL SIMULATION FOR SUBMARINE GAS HYDRATE FORMATION: UPON THE ASSUMPTION OF UPWARD ADVECTION OF METHANE-BEARING POREWATER[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
Citation: ZHANG Hui, YANG Rui, KUANG Zenggui, HUANG Li, YAN Pin. MATHEMATICAL SIMULATION FOR SUBMARINE GAS HYDRATE FORMATION: UPON THE ASSUMPTION OF UPWARD ADVECTION OF METHANE-BEARING POREWATER[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013

MATHEMATICAL SIMULATION FOR SUBMARINE GAS HYDRATE FORMATION: UPON THE ASSUMPTION OF UPWARD ADVECTION OF METHANE-BEARING POREWATER

More Information
  • Sea bottom gas hydrate (GH) may be formed by porewater advecting upward from deep. In order to understand this process, we developed a non-dimensional mathematical model, combining together the sedimentary process, methane transporting by convection and diffusion of fluid upward, and methane solubility, for study of GH formation and accumulation in a temporal and spatial framework. The model describes the process of GH formation and accumulation with 3 dimensionless parameters, Pe1, Pe2, $\widetilde C_{m, ext}^{_{_{\rm{l}}}}$, which represents respectively the sedimentary process, porewater advection upward from deep and methane content in the fluid. GH emerges in the upper gas hydrate stability zone (GHSZ) first, then grows downward within the continuous sedimentary deposits, and extends eventually to the base of GHSZ. There is a negative correlation between GH evolution time and the three parameters of Pe1, Pe2, $\widetilde C_{m, ext}^{_{_{\rm{l}}}}$, and between GH concentration and Pe1, $\widetilde C_{m, ext}^{_{_{\rm{l}}}}$, but a positive correlation between GH concentration, evolution time and upward methane flux (Pe2 and $\widetilde C_{m, ext}^{_{_{\rm{l}}}}$). The methane solubility influences greatly on the GH formation and distribution. But the simulation results suggest that both the methane concentration of fluid flow from deep and its flux control the methane inputs and outputs of the hydrate system. They are not included in the solubility-curve. So we propose the methane concentration of porewater upward and its flux as controlling factors.

  • 加载中
  • [1] Paull C K, Matsumoto R, Wallace P J. Proceedings of the ocean drilling program, initial reports[R]. College Station, TX (Ocean Drilling Program), 1996, 164.

    Google Scholar

    [2] 吴能友, 梁金强, 王宏斌, 等.海洋天然气水合物成藏系统研究进展[J].现代地质, 2008, 22(3): 356-362.

    Google Scholar

    WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art (in Chinese) [J]. Geoscience, 2008, 22(13): 356-362.

    Google Scholar

    [3] Paull C K, Matsumoto R. Proceedings of the ocean drilling program, scientific results [R].College Station, TX (Ocean Drilling Program), 2000, 164: 3-10.

    Google Scholar

    [4] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213: 169-183. doi: 10.1016/S0012-821X(03)00325-X

    CrossRef Google Scholar

    [5] Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204 [J]. Earth and Planetary Science Letters, 2004, 222: 845-862. doi: 10.1016/j.epsl.2004.03.035

    CrossRef Google Scholar

    [6] Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion [J]. Journal of Geophysical Research, 1992, 97(B5): 7025-7041. doi: 10.1029/91JB03061

    CrossRef Google Scholar

    [7] Rempel A W, Buffett B A. Formation and accumulation of gas hydrate in porous media [J]. Journal of Geophysical Research, 1997, 102(B5): 10151-10164. doi: 10.1029/97JB00392

    CrossRef Google Scholar

    [8] Rempel A W, Buffett B A. Mathematical models of gas hydrate accumulation [J]. Geological Society, London, Special Publications, 1998, 137(1): 63-74. doi: 10.1144/GSL.SP.1998.137.01.05

    CrossRef Google Scholar

    [9] Xu W Y, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments [J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B3): 5081-5095. doi: 10.1029/1998JB900092

    CrossRef Google Scholar

    [10] Zatsepina O Y, Buffett B A. Thermodynamic conditions for the study of gas hydrates in the seafloor [J]. Journal of Geophysical Research, 1998, 103(B10): 24127-24139. doi: 10.1029/98JB02137

    CrossRef Google Scholar

    [11] Davie M K, Buffett B A. A numerical model for the formation of gas hydrate below the seafloor [J]. Journal of Geophysical Research-Solid Earth, 2001, 106(B1): 497-514. doi: 10.1029/2000JB900363

    CrossRef Google Scholar

    [12] Bhatnagar G, Chapman W G., Dickens G R, et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes [J]. American Journal of Science, 2007, 307: 861-900. doi: 10.2475/06.2007.01

    CrossRef Google Scholar

    [13] Haacke R R, Westbrook G K, Riley M S. Controls on the formation and stability of gas hydrate-related bottom-simulating reflectors (BSRs): A case study from the west Svalbard continental slope [J]. Journal of Geophysical Research, 2008, 113: B05104.

    Google Scholar

    [14] Haacke R R, Westbrook G K, Hyndman R D. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 407-420. doi: 10.1016/j.epsl.2007.07.008

    CrossRef Google Scholar

    [15] Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on hydrate distribution at ODP Site 997 (Blake Ridge) [J]. Chemical Geology, 1999, 153: 53-79. doi: 10.1016/S0009-2541(98)00152-1

    CrossRef Google Scholar

    [16] Davie M K, Zatsepina O Y, Buffett B A. Methane solubility in marine hydrate environments [J]. Marine Geology, 2004, 203(1-2): 177-184. doi: 10.1016/S0025-3227(03)00331-1

    CrossRef Google Scholar

    [17] Wang K, Hyndman R D, Davis E E. Thermal effects of sediment thickening and fluid expulsion in accretionary prisms-model and parameter analysis [J]. Journal of Geophysical Research, 1993, 98(6): 9975-9984.

    Google Scholar

    [18] Dickens G R, Paull C K, Wallace P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir [J]. Nature, 1997, 385(6615): 426-428. doi: 10.1038/385426a0

    CrossRef Google Scholar

    [19] Torres M E, Wallman, K, Trehu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon [J]. Earth and Planetary Science Letters, 2004, 226: 225-241. doi: 10.1016/j.epsl.2004.07.029

    CrossRef Google Scholar

    [20] Haeckel M, Suess E, Wallman K, et al. Rising methane gas bubbles form massive hydrate layers at the seafloor [J]. Geochimica et Cosmochimica Acta, 2004, 68: 4335-4345. doi: 10.1016/j.gca.2004.01.018

    CrossRef Google Scholar

    [21] Wallmann K, Aloisi G, Obzhirov A, et al. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3905-3927. doi: 10.1016/j.gca.2006.06.003

    CrossRef Google Scholar

    [22] Westbrook G K, Carson B, Musgrave R J, et al. Proceedings of the ocean drilling program, initial reports [R].College Station, TX (Ocean Drilling Program), 1994, 146.http://www-odp.tamu.edu/publications/146_1_IR/VOLUME/CHAPTERS/146irpt1.pdf

    Google Scholar

    [23] Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    CrossRef Google Scholar

    [24] Davie M K, Buffett B A. A steady state model for marine hydrate formation: Constraints on methane supply from pore water sulfate profiles [J]. Journal of Geophysical Research-Solid Earth, 2003, 108(B10): 2495.

    Google Scholar

    [25] Kastner M, Kvenvolden K A, Whiticar M J, et al. Relation Between Pore Fluid Chemistry and Gas Hydrates Associated with Bottom-Simulating Reflectors at the Cascadia Margin, Sites 889 and 892 [C]//In: Carson B, Westbrook G K, Musgrave R J, Suess E, Eds. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 146: 175-187.

    Google Scholar

    [26] Kvenvolden K A. Gas hydrates-geological perspective and global change [J]. Reviews of Geophysics, 1993, 31(2): 173-187.

    Google Scholar

    [27] Paull C K, Ussler W I, Borowski W S. Natural gas hydrates, chapter sources of biogenic methane to form marine gas hydrates [J]. Annals of the New York Academy of Sciences, 1994, 715: 392-409. doi: 10.1111/j.1749-6632.1994.tb38852.x

    CrossRef Google Scholar

    [28] Pecher I A, Minshull T A, Singh S C, et al. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 459-469. doi: 10.1016/0012-821X(95)00242-5

    CrossRef Google Scholar

    [29] Huene R V, Pecher I A. Vertical tectonics and the origins of BSRs along the Peru margin [J]. Earth and Planetary Science Letters, 1999, 166(1-2): 47-55. doi: 10.1016/S0012-821X(98)00274-X

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1259) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint