2017 Vol. 37, No. 1
Article Contents

ZHANG Yangshuo, QIAO Shuqing, SHI Xuefa, YANG Gang, LIU Shengfa, DU Dewen, Narumol Kornkanitnan, Somkiat Khokiattiwong, YAN Quanshu, ZHANG Haitao, CAO Dekai. MOVING TREND OF BOTTOM SEDIMENTS IN GULF OF THAILAND[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 86-92. doi: 10.16562/j.cnki.0256-1492.2017.01.010
Citation: ZHANG Yangshuo, QIAO Shuqing, SHI Xuefa, YANG Gang, LIU Shengfa, DU Dewen, Narumol Kornkanitnan, Somkiat Khokiattiwong, YAN Quanshu, ZHANG Haitao, CAO Dekai. MOVING TREND OF BOTTOM SEDIMENTS IN GULF OF THAILAND[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 86-92. doi: 10.16562/j.cnki.0256-1492.2017.01.010

MOVING TREND OF BOTTOM SEDIMENTS IN GULF OF THAILAND

More Information
  • Based on the grain size data acquired from 164 bottom samples, we studied the distribution pattern and transporting trend of the sediments in the Gulf of Thailand (GoT) using the Gao-Collins's method for sediments grain size analysis. In general, most of the sediments in the study area are poorly sorted, and the sorting coefficient varies from 1.3 to 2.9 with an average of 1.8 and the skewness varies from -1.8 to 2.5 (with a mean value of 1.2). According to the research results, the study area is divided into three provinces, i.e. the provinces 1, 2 and 3. The sorting and skewness in the province 1 are 1.73 and 0.91, and those in the province 2 and 3are 1.81, 1.33 and 1.91, 1.24, respectively. It means that fine-grained sediments (silt and mud) with mean grain size of 6.5Ф are widely distributed in provinces 1 and 2, while the coarse-grained sediment (silty sand) with mean grain size of 5.5Ф are mainly distributed in the cross area between province 1 and 2 and the near-shore area of province 3. The sorting of sediments from the coastal areas including northern-, middle- and southwestern parts of GoT is poorer than that from other regions. We suggest that sediment transport in the GoT is mainly controlled by three factors, namely rivers, ocean current and East Asian monsoon. In details, for the provinces 1, the sediment transport is controlled by rivers which take sediments from estuaries into deep-water areas. For the province. 2, ocean current dominates the sediment transportation in the peripheral part of the province to the center of GoT. As for the province 3, coastal current plays a critical role to move sediments away from the nearshore area. Under the influences of these three factors mentioned above, a sediment depocenter is formed around the Sumui Island.

  • 加载中
  • [1] Mclaren P, Bowles D. The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research, 1985, 55(4):457-470.

    Google Scholar

    [2] Asselman N E M. Suspended sediment dynamics in a large drainage basin: the River Rhine[J]. Hydrological Processes, 1999, 13(10): 1437-1450. doi: 10.1002/(SICI)1099-1085(199907)13:10<1437::AID-HYP821>3.0.CO;2-J

    CrossRef Google Scholar

    [3] Poizot E, Mear Y, Thomas M, et al. The application of geostatistics in defining the characteristic distance for grain size trend analysis[J]. Computers & Geosciences, 2006, 32(3): 360-370.

    Google Scholar

    [4] Shu G, Michael C. A critique of the "McLaren Method" for defining sediment transport paths[J]. Journal of Sedimentary Petrology, 1991, 61: 143-146. doi: 10.1306/D42676A9-2B26-11D7-8648000102C1865D

    CrossRef Google Scholar

    [5] Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors"[J]. Sedimentary Geology, 1992, 81(1): 47-60.

    Google Scholar

    [6] 高建华, 高抒, 董礼先, 等.鸭绿江河口地区沉积物特征及悬沙输送[J].海洋通报, 2003, 22(5): 26-33. doi: 10.3969/j.issn.1001-6392.2003.05.005

    CrossRef Google Scholar

    GAO Jianhua, GAO Shu, DONG Lixian, et al. Sediment Distribution and Suspended Sediment Transport in Yalu River Estuary[J]. Marine Science Bulletin, 2003, 22(5):26-33. doi: 10.3969/j.issn.1001-6392.2003.05.005

    CrossRef Google Scholar

    [7] Cheng P, Gao S, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis[J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 203-212. doi: 10.1016/j.ecss.2003.12.009

    CrossRef Google Scholar

    [8] 王国庆, 石学法, 刘焱光, 等.粒径趋势分析对长江南支口外沉积物输运的指示意义[J].海洋学报, 2007, 29(6):161-166.

    Google Scholar

    WANG Guoqing, SHI Xuefa, LIU Yanguang, et al. Grain-size trend analysis on the south branch of the Changjiang Estuary in China and its implication to sediment transportation[J]. Acta Oceanologica Sinica, 2007, 14(1):83-89.

    Google Scholar

    [9] 高抒.沉积物粒径趋势与海洋沉积动力学[J].中国科学基金, 1998(4): 241-246. doi: 10.3969/j.issn.1000-8217.1998.04.002

    CrossRef Google Scholar

    GAO Shu. The use of grain size trends in marine sediment dynamics[J]. Bulletin of National Science Foundation of China, 1998(4):241-246. doi: 10.3969/j.issn.1000-8217.1998.04.002

    CrossRef Google Scholar

    [10] 王元磊.粒度趋势分析方法的研究进展[J].山东师范大学学报:自然科学版, 2008, 23(2):81-84.

    Google Scholar

    WANG Yuanlei. Research progress on analysis of grain size trends[J]. Journal of Shandong Normal University, 2008, 23(2):81-84.

    Google Scholar

    [11] 吴良士.泰国地质构造基本特征与矿产资源(二)[J].矿床地质, 2011, 30(4): 765-766. doi: 10.3969/j.issn.0258-7106.2011.04.017

    CrossRef Google Scholar

    WU Liangshi. Basic geological tectonic feature and mineral resources in Thailand[J]. Mineral Deposits, 2011, 30(4):765-766 doi: 10.3969/j.issn.0258-7106.2011.04.017

    CrossRef Google Scholar

    [12] Srisuksawad K, Porntepkasemsan B, Nouchpramool S, et al. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand[J]. Continental Shelf Research, 1997, 17(8): 925-965. doi: 10.1016/S0278-4343(96)00065-9

    CrossRef Google Scholar

    [13] Adeel Z, Tabucanon M, In-na Y, et al. Capacity development needs in the Chao Phraya River Basin and the Gulf of Thailand[C]//Conference on Managing Shred Waters. 2002.

    Google Scholar

    [14] Meksumpun S, Meksumpun C, Hoshika A, et al. Stable carbon and nitrogen isotope ratios of sediment in the gulf of Thailand: Evidence for understanding of marine environment[J]. Continental Shelf Research, 2005, 25(15): 1905-1915. doi: 10.1016/j.csr.2005.04.009

    CrossRef Google Scholar

    [15] McManus J. Grain size determination and interpretation[J]. Techniques in Sedimentology, 1988, 408: 112-116.

    Google Scholar

    [16] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211

    CrossRef Google Scholar

    [17] Poizot E, Méar Y. eCSedtrend: a new software to improve sediment trend analysis[J]. Computers & Geosciences, 2008, 34(7): 827-837.

    Google Scholar

    [18] Poizot E, Mear Y, Thomas M, et al. The application of geostatistics in defining the characteristic distance for grain size trend analysis[J]. Computers & Geosciences, 2006, 32(3): 360-370.

    Google Scholar

    [19] 高抒.沉积物粒径趋势分析, 原理与应用条件[J].沉积学报, 2009, 27(5): 826-836.

    Google Scholar

    GAO Shu. Grain size trend analysis:principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5):826-836.

    Google Scholar

    [20] 贾建军, 程鹏, 高抒.利用插值试验分析采样网格对粒度趋势分析的影响[J].海洋地质与第四纪地质, 2004, 24(3): 135-141.

    Google Scholar

    JIA Jianjun, CHENG Peng, GAO shu.Oceanography SIO, et al. comparison between grain size trends derived from irregular and regular sampling grids with the help of gis interpolation tools[J]. Marine Geology and Quaternary Geology, 2004, 24(3):135-141.

    Google Scholar

    [21] 王昆山, 石学法, 刘升发, 等, 泰国湾西部表层沉积物重矿物分布特征:对物质来源和沉积环境的指示[J].第四纪研究, 2014, 34(3):624-634.

    Google Scholar

    WANG Kunshan, SHI Xuefa, LIU Shengfa. Spatial distribution of heavy minerals in the surface sediments from the western gulf of thailand: implications for sediment provenance and sedimentary environment[J]. Quaternary Sciences, 2014:34(3):624-634.

    Google Scholar

    [22] Shi X, Liu S, Fang X, et al. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns[J]. Journal of Asian Earth Sciences, 2015, 105: 390-398. doi: 10.1016/j.jseaes.2015.02.005

    CrossRef Google Scholar

    [23] Wang H, Liu Z F, Sathiamurthy E, et al. Chemical weathering in Malay Peninsula and North Borneo: Clay mineralogy and element geochemistry of river surface sediments[J]. Science China Earth Science, 2011, 54(2):272-282. doi: 10.1007/s11430-010-4158-x

    CrossRef Google Scholar

    [24] 吴頔, 方国洪, 崔欣梅, 等.泰国湾及邻近海域潮汐潮流的数值模拟[J].华东政法大学学报, 2015, 37(1):11-20.

    Google Scholar

    WU Di, FANG Guohong, CUI Xinmei, et al. Numerical simulation of tides and tidal currents in the Gulf of Thailand and its adjacent area[J].Acta Oceanologica Sinica, 2015, 37(1):11-20.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1687) PDF downloads(113) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint