2016 Vol. 36, No. 2
Article Contents

WANG Lifeng, SHANG Jiujing, LIANG Jinqiang, XU Xing, SHA Zhibin, LU Jing, WANG Jingli. DISTRIBUTION PATTERN OF SEAFLOOR THERMAL CONDUCTIVITIES AT THE DRILLING AREA FOR GAS HYDRATE ON THE NORTHEASTERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 29-37. doi: 10.16562/j.cnki.0256-1492.2016.02.004
Citation: WANG Lifeng, SHANG Jiujing, LIANG Jinqiang, XU Xing, SHA Zhibin, LU Jing, WANG Jingli. DISTRIBUTION PATTERN OF SEAFLOOR THERMAL CONDUCTIVITIES AT THE DRILLING AREA FOR GAS HYDRATE ON THE NORTHEASTERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 29-37. doi: 10.16562/j.cnki.0256-1492.2016.02.004

DISTRIBUTION PATTERN OF SEAFLOOR THERMAL CONDUCTIVITIES AT THE DRILLING AREA FOR GAS HYDRATE ON THE NORTHEASTERN SLOPE OF SOUTH CHINA SEA

  • We investigated thermal conductivity, mineral composition, grain size and geomorphy of seafloor sediments and their variations in the drilling area on the northeastern slope of South China Sea using the thermal conductivities and multi-beam data as tools. Data reveals that the thermal conductivities of seafloor sediments are 1.26±0.12 W/(m·k) higher than the background values on average, possibly due to deposition of terrigenous turbidites and methane related high-thermal-conductivity carbonate deposits. The detailed distribution pattern of the thermal conductivities is interesting. The thermal conductivities as high as 1.32±0.06 W/(m·k) and 1.34±0.06 W/(m·k) are discovered in the areas of No. 2 and No. 5 respectively on the submarine platforms where large area is deposited by coarse grained carbonate due to bottom current denudation. Thermal conductivities as low as 1.10±0.06 W/(m·k) and 1.01±0.06 W/(m·k) are found in the typical submarine troughs of No. 1 and No. 8 areas respectively attributing to the compaction of fine grained deposits avalanched from the submarine plateaus. The seafloor sediments thermal conductivity at the drilling area decreases from the central plateaus to the peripheral troughs, probably owing to the chemical composition of highly migrating fluid under the control of endogenic process and the grain size decrease up to geomorphic changes under the control of the exogenic process.
  • 加载中
  • [1] 苏广庆, 范时清, 陈绍谋, 等. 南海北部沉积物图集[M]. 广州:广东科技出版社, 1989:4-26.[SU Guangqing, FAN Shiqing, CHEN Shaomou, et al. Sediment Atlas of Northern South China Sea[M]. Guangzhou:Guangdong Science and Technology Press, 1989:4

    Google Scholar

    -26.]

    Google Scholar

    [2] 汪品先. 十五年来的南海[M]. 上海:同济大学出版社, 1995.[WANG Pinxian. The South China Sea in Recent 15 Years[M]. Shanghai:Tongji University Press, 1995.]

    Google Scholar

    [3] 陈木宏, 郑范, 陆钧, 等. 南海西南陆坡区沉积物粒级指标的物源特征及古环境意义[J]. 科学通报, 2005, 50(7):684-690.

    Google Scholar

    [CHEN Muhong, ZHENG Fan, LU Jun, et al. Original component of grain size index in core sediment from southwestern slope of the South China Sea and its paleoenviromnental implication[J]. Chinese Science Bulletin, 2005, 50(7):684-690.]

    Google Scholar

    [4] 张健, 汪集旸. 南海北部大陆边缘深部地热特征[J]. 科学通报, 2000, 45(10):1095-1000.

    Google Scholar

    [ZHANG Jian, WANG Jiyang. The deep thermal characteristic of continental margin of the northern South China Sea[J]. Chinese Science Bulletin, 2000, 45(18):1717-1722.]

    Google Scholar

    [5] 施小斌, 周蒂, 张毅翔, 等. 南海西沙海槽岩石圈的密度结构与热流变结构[J]. 热带海洋学报, 2002, 21(2):23-31.

    Google Scholar

    [SHI Xiaobin, ZHOU Di, ZHANG Yixiang, et al. Density, thermal and rheological structures of Xisha Trough, South China Sea[J]. Journal of Tropical Oceanography, 2002, 21(2):23-31.]

    Google Scholar

    [6] YUAN Yusong, HU Shengbiao, HE Lijuan. Uniform geothermal gradient and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea[J]. Marine and Petroleum Geology, 2009, 26(7):1152-1162.

    Google Scholar

    [7] 张光学, 梁金强, 陆敬安, 等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11):1-10.

    Google Scholar

    [ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10.]

    Google Scholar

    [8] 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135.

    Google Scholar

    [LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7):128-135.]

    Google Scholar

    [9] 梁劲, 王明君, 陆敬安, 等. 南海北部神狐海域含天然气水合物沉积层的速度特征[J]. 天然气工业, 2013, 33(7):29-35.

    Google Scholar

    [LIANG Jin, WANG Mingjun, LU Jingan, et al. Characteristics of sonic and seismic velocities of gas hydrate bearing sediments in the Shenhu area, northern South China Sea[J]. Natural Gas Industry, 2013, 33(7):29-35.]

    Google Scholar

    [10] 沙志彬, 王宏斌, 杨木壮, 等. 天然气水合物成矿带的识别技术研究[J]. 现代地质, 2008, 22(3):438-446.

    Google Scholar

    [SHA Zhibin, WANG Hongbin, YANG Muzhuang, et al. Study on recognizing technology of gas hydrates zone[J]. Geoscience, 2008, 22(3):438-446.]

    Google Scholar

    [11] 徐华宁, 梁蓓雯, 张光学, 等. 南海北部陆坡天然气水合物地震识别研究[J]. 天然气工业, 2006, 26(9):49-51.

    Google Scholar

    [XU Huaning, LIANG Beiwen, ZHANG Guangxue, et al. Seismic identification of gas hydrate on northern slope of South China Sea[J]. Natural Gas Industry, 2006, 26(9):49-51.]

    Google Scholar

    [12] 苏丕波, 沙志彬, 常少英, 等. 珠江口盆地东部海域天然气水合物的成藏地质模式[J]. 天然气工业, 2014, 34(6):162-168.

    Google Scholar

    [SU Pibo, SHA Zhibin, CHANG Shaoying, et al. Geological models of gas hydrate formation in the eastern sea area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(6):162-168.]

    Google Scholar

    [13] 刘昭蜀, 赵焕庭. 南海地质[M]. 北京:科学出版社, 2002.[LIU Zhaoshu, ZHAO Hunating. Geology in the South China Sea[M]. Beijing:Science Press, 2002.]

    Google Scholar

    [14] Fuh S C, Chern C C, Liang S C, et al. The biogenic gas potential of the submarine canyon systems of Plio-Peistocene Foreland Basin, Southwestern Taiwan[J]. Marine and Petroleum Geology, 2009, 26(7):1087-1099.

    Google Scholar

    [15] 龚跃华, 吴时国, 张光学, 等. 南海东沙海域天然气水合物与地质构造的关系[J]. 海洋地质与第四纪地质, 2008, 28(1):99-104.

    Google Scholar

    [GONG Yuehua, WU Shiguo, ZHANG Guangxue, et al. Relation between gas hydrate and geologic structures in Dongsha Islands sea area of South China Sea[J]. Marine Geology and Quaternary Geology, 2008, 28(1):99-104.]

    Google Scholar

    [16] 尚久靖, 吴庐山, 梁金强, 等. 南海东北部陆坡海底微地貌特征及其天然气渗透模式[J]. 海洋地质与第四纪地质, 2014, 34(1):129-136.

    Google Scholar

    [SHANG Jiujing, WU Lushan, LIANG Jinqiang, et al. The microtopographic features and gas seep model on the slope in the northeastern South China Sea[J]. Marine Geology and Quaternary Geology, 2014, 34(1):129-136.]

    Google Scholar

    [17] Hyndman R D, Erickson A J, von Herzen R P. Geothermal measurement on DSDP Leg 26[C]//Davies T A, Luyendyk B P, et al. Proceeding of DSDP Initial Report. 1974, 26:451-463.

    Google Scholar

    [18] Horai K. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysics Research, 1971, 76:1278-1308.

    Google Scholar

    [19] 黄永样, Erwin Suess, 吴能友, 等. 南海北部陆坡甲烷和天然气水合物地质-中德合作OS-177航次成果专报[M]. 北京:地质出版社, 2008.[HUANG Yongyang, Erwin Suess, WU Nengyou, et al. Methane and Gas Hydrate Geology of the Northern South China Sea:Sino-German Cooperative SO-177 Cruise Report[M]. Beijing:Geological Publishing House, 2008.]

    Google Scholar

    [20] 徐行, 施小斌, 罗贤虎, 等. 南海西沙海槽地区的海底热流测量[J]. 海洋地质与第四纪地质, 2006, 26(4):51-58.

    Google Scholar

    [XU Xing, SHI Xiaobin, LUO Xianhu, et al. Heat flow measurements in the Xisha trough of the South China Sea[J]. Marine Geology and` Quaternary Geology, 2006, 26(4):51-58.]

    Google Scholar

    [21] Goto S, Matsubayashi O. Relations between the thermal properties and porosity of sediments in the eastern flank of the Juan de Fuca Ridge[J]. Earth Planets Space, 2009, 61:863-870.

    Google Scholar

    [22] Horai K, Simmons G. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysics Research, 1969, 6:359-368.

    Google Scholar

    [23] Kaye G W C, Laby T H. Tables of Physical and Chemical Constants and Some Mathematical Functions[M]. 15th edition. Longman, London, 1986.

    Google Scholar

    [24] Midttomme K, Roaldset E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998, 4:165-172.

    Google Scholar

    [25] Beziat A, Dardaine M, Mouche E. Measurements of thermal conductivity of clay-sand and clay-graphite mixtures used as engineered barriers for high-level radioactive waste disposal[J]. Application of Clay Science, 1992, 6:245-263.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1850) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint