[1] |
苏广庆, 范时清, 陈绍谋, 等. 南海北部沉积物图集[M]. 广州:广东科技出版社, 1989:4-26.[SU Guangqing, FAN Shiqing, CHEN Shaomou, et al. Sediment Atlas of Northern South China Sea[M]. Guangzhou:Guangdong Science and Technology Press, 1989:4
Google Scholar
-26.]
Google Scholar
|
[2] |
汪品先. 十五年来的南海[M]. 上海:同济大学出版社, 1995.[WANG Pinxian. The South China Sea in Recent 15 Years[M]. Shanghai:Tongji University Press, 1995.]
Google Scholar
|
[3] |
陈木宏, 郑范, 陆钧, 等. 南海西南陆坡区沉积物粒级指标的物源特征及古环境意义[J]. 科学通报, 2005, 50(7):684-690.
Google Scholar
[CHEN Muhong, ZHENG Fan, LU Jun, et al. Original component of grain size index in core sediment from southwestern slope of the South China Sea and its paleoenviromnental implication[J]. Chinese Science Bulletin, 2005, 50(7):684-690.]
Google Scholar
|
[4] |
张健, 汪集旸. 南海北部大陆边缘深部地热特征[J]. 科学通报, 2000, 45(10):1095-1000.
Google Scholar
[ZHANG Jian, WANG Jiyang. The deep thermal characteristic of continental margin of the northern South China Sea[J]. Chinese Science Bulletin, 2000, 45(18):1717-1722.]
Google Scholar
|
[5] |
施小斌, 周蒂, 张毅翔, 等. 南海西沙海槽岩石圈的密度结构与热流变结构[J]. 热带海洋学报, 2002, 21(2):23-31.
Google Scholar
[SHI Xiaobin, ZHOU Di, ZHANG Yixiang, et al. Density, thermal and rheological structures of Xisha Trough, South China Sea[J]. Journal of Tropical Oceanography, 2002, 21(2):23-31.]
Google Scholar
|
[6] |
YUAN Yusong, HU Shengbiao, HE Lijuan. Uniform geothermal gradient and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea[J]. Marine and Petroleum Geology, 2009, 26(7):1152-1162.
Google Scholar
|
[7] |
张光学, 梁金强, 陆敬安, 等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11):1-10.
Google Scholar
[ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10.]
Google Scholar
|
[8] |
梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135.
Google Scholar
[LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7):128-135.]
Google Scholar
|
[9] |
梁劲, 王明君, 陆敬安, 等. 南海北部神狐海域含天然气水合物沉积层的速度特征[J]. 天然气工业, 2013, 33(7):29-35.
Google Scholar
[LIANG Jin, WANG Mingjun, LU Jingan, et al. Characteristics of sonic and seismic velocities of gas hydrate bearing sediments in the Shenhu area, northern South China Sea[J]. Natural Gas Industry, 2013, 33(7):29-35.]
Google Scholar
|
[10] |
沙志彬, 王宏斌, 杨木壮, 等. 天然气水合物成矿带的识别技术研究[J]. 现代地质, 2008, 22(3):438-446.
Google Scholar
[SHA Zhibin, WANG Hongbin, YANG Muzhuang, et al. Study on recognizing technology of gas hydrates zone[J]. Geoscience, 2008, 22(3):438-446.]
Google Scholar
|
[11] |
徐华宁, 梁蓓雯, 张光学, 等. 南海北部陆坡天然气水合物地震识别研究[J]. 天然气工业, 2006, 26(9):49-51.
Google Scholar
[XU Huaning, LIANG Beiwen, ZHANG Guangxue, et al. Seismic identification of gas hydrate on northern slope of South China Sea[J]. Natural Gas Industry, 2006, 26(9):49-51.]
Google Scholar
|
[12] |
苏丕波, 沙志彬, 常少英, 等. 珠江口盆地东部海域天然气水合物的成藏地质模式[J]. 天然气工业, 2014, 34(6):162-168.
Google Scholar
[SU Pibo, SHA Zhibin, CHANG Shaoying, et al. Geological models of gas hydrate formation in the eastern sea area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(6):162-168.]
Google Scholar
|
[13] |
刘昭蜀, 赵焕庭. 南海地质[M]. 北京:科学出版社, 2002.[LIU Zhaoshu, ZHAO Hunating. Geology in the South China Sea[M]. Beijing:Science Press, 2002.]
Google Scholar
|
[14] |
Fuh S C, Chern C C, Liang S C, et al. The biogenic gas potential of the submarine canyon systems of Plio-Peistocene Foreland Basin, Southwestern Taiwan[J]. Marine and Petroleum Geology, 2009, 26(7):1087-1099.
Google Scholar
|
[15] |
龚跃华, 吴时国, 张光学, 等. 南海东沙海域天然气水合物与地质构造的关系[J]. 海洋地质与第四纪地质, 2008, 28(1):99-104.
Google Scholar
[GONG Yuehua, WU Shiguo, ZHANG Guangxue, et al. Relation between gas hydrate and geologic structures in Dongsha Islands sea area of South China Sea[J]. Marine Geology and Quaternary Geology, 2008, 28(1):99-104.]
Google Scholar
|
[16] |
尚久靖, 吴庐山, 梁金强, 等. 南海东北部陆坡海底微地貌特征及其天然气渗透模式[J]. 海洋地质与第四纪地质, 2014, 34(1):129-136.
Google Scholar
[SHANG Jiujing, WU Lushan, LIANG Jinqiang, et al. The microtopographic features and gas seep model on the slope in the northeastern South China Sea[J]. Marine Geology and Quaternary Geology, 2014, 34(1):129-136.]
Google Scholar
|
[17] |
Hyndman R D, Erickson A J, von Herzen R P. Geothermal measurement on DSDP Leg 26[C]//Davies T A, Luyendyk B P, et al. Proceeding of DSDP Initial Report. 1974, 26:451-463.
Google Scholar
|
[18] |
Horai K. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysics Research, 1971, 76:1278-1308.
Google Scholar
|
[19] |
黄永样, Erwin Suess, 吴能友, 等. 南海北部陆坡甲烷和天然气水合物地质-中德合作OS-177航次成果专报[M]. 北京:地质出版社, 2008.[HUANG Yongyang, Erwin Suess, WU Nengyou, et al. Methane and Gas Hydrate Geology of the Northern South China Sea:Sino-German Cooperative SO-177 Cruise Report[M]. Beijing:Geological Publishing House, 2008.]
Google Scholar
|
[20] |
徐行, 施小斌, 罗贤虎, 等. 南海西沙海槽地区的海底热流测量[J]. 海洋地质与第四纪地质, 2006, 26(4):51-58.
Google Scholar
[XU Xing, SHI Xiaobin, LUO Xianhu, et al. Heat flow measurements in the Xisha trough of the South China Sea[J]. Marine Geology and` Quaternary Geology, 2006, 26(4):51-58.]
Google Scholar
|
[21] |
Goto S, Matsubayashi O. Relations between the thermal properties and porosity of sediments in the eastern flank of the Juan de Fuca Ridge[J]. Earth Planets Space, 2009, 61:863-870.
Google Scholar
|
[22] |
Horai K, Simmons G. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysics Research, 1969, 6:359-368.
Google Scholar
|
[23] |
Kaye G W C, Laby T H. Tables of Physical and Chemical Constants and Some Mathematical Functions[M]. 15th edition. Longman, London, 1986.
Google Scholar
|
[24] |
Midttomme K, Roaldset E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998, 4:165-172.
Google Scholar
|
[25] |
Beziat A, Dardaine M, Mouche E. Measurements of thermal conductivity of clay-sand and clay-graphite mixtures used as engineered barriers for high-level radioactive waste disposal[J]. Application of Clay Science, 1992, 6:245-263.
Google Scholar
|