[1] |
Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the earth's history for paleoclimate studies[J]. Science New Series, 1992, 255(5044):560-566.
Google Scholar
|
[2] |
Osleger D, Read J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, U. S.A[J]. Journal of Sedimentary Petrology, 1991, 61:1225-1252
Google Scholar
|
[3] |
Francisco J. Lobo, Domenico Ridente. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins:An overview[J]. Marine Geology, 2014, 352(S1):215-247.
Google Scholar
|
[4] |
邱贵强, 刘军愕, 帅平. 米兰柯维奇旋回基本原理及其在陆相湖盆分析中的应用前景[J].油气地质与采收率, 2001, 8(5):45-49.
Google Scholar
[QIU Guiqiang, LIU June, SHUAI Ping. Basic principle of Milankovitch cycle and it's prospect in terrigenous lake basin analysis[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(5):5-9]
Google Scholar
|
[5] |
徐道一. 天文地质年代表与旋回地层学研究进展[J]. 地层学杂志, 2005, 29:635-640.[XU Daoyi. Astro-geologic time scale and the advancements of cyclostratigraphy[J]. Journal of Stratigraphy, 2005
Google Scholar
, 29:635-640.]
Google Scholar
|
[6] |
李斌, 孟自芳, 李相博, 等. 靖安油田延长组米兰柯维奇沉积旋回分析[J]. 地质科技情报,2005,24(2):64-70.
Google Scholar
[LI Bin, MENG Zifang, LI Xiangbo, et al. Analysis of Milankovitch cycles of Yanchang Formation in Jing'an Oilfield[J].Geological Science andTechnology Information, 2005, 24(2):64-70.]
Google Scholar
|
[7] |
Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1/4):1-26.
Google Scholar
|
[8] |
Nádor A, Lantos M, Tóth-Makk Á,et al. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary[J]. Quaternary Science Reviews, 2003, 22(20):2157-2175.
Google Scholar
|
[9] |
Massari F, Capraro L, Rio D. Climatic modulation of timing of systems-tract development with respect to Sea-level changes (middle Pleistocene of Crotone, Calabria, Southern Italy)[J]. Journal of Sedimentary Research, 2007, 77(5/6):461-468.
Google Scholar
|
[10] |
Francisco J Lobo, Domenico Ridente. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins:An overview[J]. Marine Geology, 2014, 352(S1):215-247.
Google Scholar
|
[11] |
徐伟, 解习农. 基于米兰科维奇周期的沉积速率计算新方法:以东营凹陷牛38井沙三中为例[J]. 石油实验地质, 2012, 34(2):207-214.
Google Scholar
[XU Wei, XIE Xinong. A new method to calculate sedimentary rates based on Milankovitch Cycles:a case study on middle section of 3rd member of Shahejie Formation in well Niu38, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2012, 34(2):207-214.]
Google Scholar
|
[12] |
宋明水,李存磊,张金亮.东营凹陷盐家地区砂砾岩体沉积期次精细划分与对比[J]. 石油学报, 2012, 33(5):781-789.
Google Scholar
[SONG Mingshui, LI Cunlei, ZHANG Jinliang. Fine division and correlation of conglomerate sedimentary cycles in Yanjia area of Dongying depression[J]. Acta Petrolei Sinica, 2012, 33(5):781-789.]
Google Scholar
|
[13] |
Sloan, E. D. Gas hydrates:Review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2):191-196.
Google Scholar
|
[14] |
Lisiecki L E and Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1-17.
Google Scholar
|
[15] |
Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada[J]. Climate of the Past, 2012, 8(2):667-682.
Google Scholar
|
[16] |
庞雄, 陈长民, 邵磊, 等. 白云运动:南海北部渐新统-中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2):145-150.
Google Scholar
[PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun Movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications[J]. Geological Review, 2007, 53(2):145-150.]
Google Scholar
|
[17] |
柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2):234-242.
Google Scholar
[LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration[J]. Acta Petrolei Sinica, 2011, 32(2):234-242.]
Google Scholar
|
[18] |
Pang X,Yang S K, Zhu M, et al. The deep water fan systems and petroleum resource in the northern slope of South China Sea[J]. Acta Geologica Sinica, 2004, 78(3):626-631.
Google Scholar
|
[19] |
Ding W W, Li J B, Li J, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4):221-238.
Google Scholar
|
[20] |
Zhou D, Sun Z, Liao J, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. Journal of Earth Science, 2009, 20(1):160-171.
Google Scholar
|
[21] |
Laskar J, Robutel P, Joutel F, et al.A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1):261-285.
Google Scholar
|
[22] |
Laskar J, Fienga A, Gastineau M, et al. La2010:a new orbital solution for the long-term motion of the Earth[J]. Astronomy and Astrophysics, 2011, 532:89-104.
Google Scholar
|
[23] |
Wonik T. Gamma-Ray measurement in the KirchrodeⅠandⅡborehole[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 174:97-105.
Google Scholar
|
[24] |
Schulz M, Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers&Geosciences, 2002, 28:421-426.
Google Scholar
|
[25] |
Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
Google Scholar
|
[26] |
Kuhlmann J, Asioli A, Trincardi F. Sedimentary response to Milankovitch-type climatic oscillations and formation of sediment undulations:evidence from a shallow-shelf setting at Gela Basin on the Sicilian continental margin[J]. Quaternary Science Reviews, 2015, 108:76-94.
Google Scholar
|
[27] |
Sadler PM, Osleger D A, Montanez I P. On the labelling, length and objective basis of Fischer plots[J]. Journal of Sedimentary Petrology, 1993, 63(2):360-368.
Google Scholar
|
[28] |
Husinec A, Basch D, Rose B. FISCHERPLOTS:An Excel spreadsheet for computing Fischer plots of accommodation change in cyclic carbonate successions in both the time and depth domains[J]. Computers & Geosciences, 2008, 34(3):269-277.
Google Scholar
|