2016 Vol. 36, No. 2
Article Contents

LIU Jie, SUN Meijing, SU Ming, WU Nengyou, YAN Heng, YANG Rui. HIGH-RESOLUTION SEQUENCE STRATIGRAPHY ON MILANKOVITCH CYCLES IN THE GAS HYDRATE DRILLING AREA OF SHENHU WATERS[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 11-18. doi: 10.16562/j.cnki.0256-1492.2016.02.002
Citation: LIU Jie, SUN Meijing, SU Ming, WU Nengyou, YAN Heng, YANG Rui. HIGH-RESOLUTION SEQUENCE STRATIGRAPHY ON MILANKOVITCH CYCLES IN THE GAS HYDRATE DRILLING AREA OF SHENHU WATERS[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 11-18. doi: 10.16562/j.cnki.0256-1492.2016.02.002

HIGH-RESOLUTION SEQUENCE STRATIGRAPHY ON MILANKOVITCH CYCLES IN THE GAS HYDRATE DRILLING AREA OF SHENHU WATERS

  • The Quaternary sequence stratigraphic framework was established for the northern slope of the Baiyun Sag, the Pearl River Mouth Basin, based on high resolution 2D seismic profiles. The deposit is divided into three systems tracts, i.e. the LST (lowstand systems tract, LST), TST (transgressive systems tract, TST) and HST (highstand systems tract, HST). The HST could be further divided into two depositional units, HST-I and HST-Ⅱ, according to the prograding styles of the slope, the vertical stacking patterns, the change in erosion features, and the continuity of high-amplitude seismic reflectors. Under the constraints of stratigraphic framework, the natural gamma data from Well-I of the gas hydrate drilling area of the Shenhu waters have been used for spectral analysis. The Milankovitch cycles are identified by spectrum analysis, including the eccentricity cycles (95 ka), obliquity cycle (40 ka), precession cycles (22 ka, 19ka), and the sequence is mainly controlled by the eccentricity cycle (95 ka), corresponding to a thickness of 11.494 m. It is found that the number of dominant cycles controlled by the eccentricity cycles (95 ka) is about 20 after filtering of logs. The sedimentation rate in the drilling area is 12.1 cm/ka calculated with the eccentricity cycle and the corresponding thickness of the cycle. The accommodation change curves of the sequences obtained using Fischer diagram can verify the high resolution sequence stratigraphic division.
  • 加载中
  • [1] Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the earth's history for paleoclimate studies[J]. Science New Series, 1992, 255(5044):560-566.

    Google Scholar

    [2] Osleger D, Read J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, U. S.A[J]. Journal of Sedimentary Petrology, 1991, 61:1225-1252

    Google Scholar

    [3] Francisco J. Lobo, Domenico Ridente. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins:An overview[J]. Marine Geology, 2014, 352(S1):215-247.

    Google Scholar

    [4] 邱贵强, 刘军愕, 帅平. 米兰柯维奇旋回基本原理及其在陆相湖盆分析中的应用前景[J].油气地质与采收率, 2001, 8(5):45-49.

    Google Scholar

    [QIU Guiqiang, LIU June, SHUAI Ping. Basic principle of Milankovitch cycle and it's prospect in terrigenous lake basin analysis[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(5):5-9]

    Google Scholar

    [5] 徐道一. 天文地质年代表与旋回地层学研究进展[J]. 地层学杂志, 2005, 29:635-640.[XU Daoyi. Astro-geologic time scale and the advancements of cyclostratigraphy[J]. Journal of Stratigraphy, 2005

    Google Scholar

    , 29:635-640.]

    Google Scholar

    [6] 李斌, 孟自芳, 李相博, 等. 靖安油田延长组米兰柯维奇沉积旋回分析[J]. 地质科技情报,2005,24(2):64-70.

    Google Scholar

    [LI Bin, MENG Zifang, LI Xiangbo, et al. Analysis of Milankovitch cycles of Yanchang Formation in Jing'an Oilfield[J].Geological Science andTechnology Information, 2005, 24(2):64-70.]

    Google Scholar

    [7] Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1/4):1-26.

    Google Scholar

    [8] Nádor A, Lantos M, Tóth-Makk Á,et al. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary[J]. Quaternary Science Reviews, 2003, 22(20):2157-2175.

    Google Scholar

    [9] Massari F, Capraro L, Rio D. Climatic modulation of timing of systems-tract development with respect to Sea-level changes (middle Pleistocene of Crotone, Calabria, Southern Italy)[J]. Journal of Sedimentary Research, 2007, 77(5/6):461-468.

    Google Scholar

    [10] Francisco J Lobo, Domenico Ridente. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins:An overview[J]. Marine Geology, 2014, 352(S1):215-247.

    Google Scholar

    [11] 徐伟, 解习农. 基于米兰科维奇周期的沉积速率计算新方法:以东营凹陷牛38井沙三中为例[J]. 石油实验地质, 2012, 34(2):207-214.

    Google Scholar

    [XU Wei, XIE Xinong. A new method to calculate sedimentary rates based on Milankovitch Cycles:a case study on middle section of 3rd member of Shahejie Formation in well Niu38, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2012, 34(2):207-214.]

    Google Scholar

    [12] 宋明水,李存磊,张金亮.东营凹陷盐家地区砂砾岩体沉积期次精细划分与对比[J]. 石油学报, 2012, 33(5):781-789.

    Google Scholar

    [SONG Mingshui, LI Cunlei, ZHANG Jinliang. Fine division and correlation of conglomerate sedimentary cycles in Yanjia area of Dongying depression[J]. Acta Petrolei Sinica, 2012, 33(5):781-789.]

    Google Scholar

    [13] Sloan, E. D. Gas hydrates:Review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2):191-196.

    Google Scholar

    [14] Lisiecki L E and Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1-17.

    Google Scholar

    [15] Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada[J]. Climate of the Past, 2012, 8(2):667-682.

    Google Scholar

    [16] 庞雄, 陈长民, 邵磊, 等. 白云运动:南海北部渐新统-中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2):145-150.

    Google Scholar

    [PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun Movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications[J]. Geological Review, 2007, 53(2):145-150.]

    Google Scholar

    [17] 柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2):234-242.

    Google Scholar

    [LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration[J]. Acta Petrolei Sinica, 2011, 32(2):234-242.]

    Google Scholar

    [18] Pang X,Yang S K, Zhu M, et al. The deep water fan systems and petroleum resource in the northern slope of South China Sea[J]. Acta Geologica Sinica, 2004, 78(3):626-631.

    Google Scholar

    [19] Ding W W, Li J B, Li J, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4):221-238.

    Google Scholar

    [20] Zhou D, Sun Z, Liao J, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. Journal of Earth Science, 2009, 20(1):160-171.

    Google Scholar

    [21] Laskar J, Robutel P, Joutel F, et al.A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1):261-285.

    Google Scholar

    [22] Laskar J, Fienga A, Gastineau M, et al. La2010:a new orbital solution for the long-term motion of the Earth[J]. Astronomy and Astrophysics, 2011, 532:89-104.

    Google Scholar

    [23] Wonik T. Gamma-Ray measurement in the KirchrodeⅠandⅡborehole[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 174:97-105.

    Google Scholar

    [24] Schulz M, Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers&Geosciences, 2002, 28:421-426.

    Google Scholar

    [25] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.

    Google Scholar

    [26] Kuhlmann J, Asioli A, Trincardi F. Sedimentary response to Milankovitch-type climatic oscillations and formation of sediment undulations:evidence from a shallow-shelf setting at Gela Basin on the Sicilian continental margin[J]. Quaternary Science Reviews, 2015, 108:76-94.

    Google Scholar

    [27] Sadler PM, Osleger D A, Montanez I P. On the labelling, length and objective basis of Fischer plots[J]. Journal of Sedimentary Petrology, 1993, 63(2):360-368.

    Google Scholar

    [28] Husinec A, Basch D, Rose B. FISCHERPLOTS:An Excel spreadsheet for computing Fischer plots of accommodation change in cyclic carbonate successions in both the time and depth domains[J]. Computers & Geosciences, 2008, 34(3):269-277.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1168) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint