2015 Vol. 35, No. 6
Article Contents

GUO Jingteng, LI Tiegang, YU Xinke, XIONG Zhifang, CHANG Fengming. A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 109-118. doi: 10.16562/j.cnki.0256-1492.2015.06.011
Citation: GUO Jingteng, LI Tiegang, YU Xinke, XIONG Zhifang, CHANG Fengming. A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 109-118. doi: 10.16562/j.cnki.0256-1492.2015.06.011

A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION

More Information
  • B/Ca in the planktic foraminifera is mainly controlled by seawater pH,and thus could be used as ageochemical proxy for seawater pH.In order to explore the significance of ocean on the pCO2 in the atmosphere in glacial cycles,the proxy has received wide concerns among researchers.However,its reliability may be influenced by various factors,such as temperature,[CO32-],dissolution,vital effects(such as symbiont photosynthesis,respiration and calcification)as well as interspecies effects.To evaluate the influence of vital effects and dissolution on B/Ca of planktic foraminifera,we measured the B/Ca for Globigerinoides ruber and Neogloboquadrina dutertrei with different size and shell thickness from the core MD06-3052 in the western Pacific Warm Pool.Except for two cases,the B/Ca of G.ruber generally increases with increasing shell size,which is supposed to be controlled by increasing calcification rate.For the two special kinds of cases,the B/Ca of G.ruberfrom one sampling layer shows little change with the increase inshell size,and the figure from the other layer does not vary in the beginning and then increases with shell size.It is believed that these characteristics are caused by the opposite effect of calcification,respiration and symbiosis photosynthesis on the B/Ca of G.ruber.The B/Ca of N.dutertrei,however,generally decreases with increasing shell size which is probably controlled by respiration.In addition,the B/Ca of G.ruber and N.dutertrei are also different for same size shells in same sample layer.The differences in B/Ca insame species with different shell size and in different species with same shell size suggest that vital effects have important influence on foraminifera B/Ca through specific processes.However,that the B/Ca of G.ruber and N.dutertrei in the same sample layer do not show obvious discrepancy between the species with different shell thickness and same shell size suggests that dissolution has little effect on B/Ca.In summary,from the perspective of vital effects and dissolution,the B/Ca of planktic foraminifera is a valid proxy for seawater pH,as long as the dominant shell size is chosen to reduce the influence of vital effects on its B/Ca.
  • 加载中
  • [1] Barker S,Elderfield H.Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J].Science, 2002,297(5582):833-836.

    Google Scholar

    [2] Palmer M R,Pearson P N.A 23,000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean[J].Science,2003,300(5618):480-482.

    Google Scholar

    [3] Hönisch B,Hemming N G.Surface ocean pH response to variations in pCO2 through two full glacial cycles[J].Earth and Planetary Science Letters,2005,236(1):305-314.

    Google Scholar

    [4] Yu J,Elderfield H,Hönisch B.B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J].Paleoceanography, 2007,22(2),PA2202,doi:10.1029/2006PA001347.

    Google Scholar

    [5] Dickson A G.Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J].Deep Sea Research Part A.Oceanographic Research Papers,1990,37(5):755-766.

    Google Scholar

    [6] Hemming N G.Hanson G N.Boron isotopic composition and concentration in modern marine carbonates[J].Geochim.Cosmochim. Acta,1992,56:537-543.

    Google Scholar

    [7] Foster G L.Seawater pH,pCO2 and[CO32-]variations in the Caribbean Sea over the last 130 kyr:A boron isotope and B/Ca study of planktic foraminiferal[J].Earth and Planetary Science Letters,2008,271:254-266.

    Google Scholar

    [8] Sanyal A,Hemming N G,and Broecker W S,Changes in pH in the eastern equatorial Pacific across stage 5-6 boundary based on boron isotopes in foraminifera[J].Global Biogeochemical Cycles,1997,11(1):125-133.

    Google Scholar

    [9] Yu J,Thornalley D J R,Rae J W B,et al.Calibration and application of B/Ca,Cd/Ca,and δ11 B in Neogloboquadrinapachyderma (sinistral)to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation[J].Paleoceanography, 2013,28(2):237-252.

    Google Scholar

    [10] Wara M W,Delaney M L,Bullen T D,et al.Possible roles of pH,temperature,and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera[J].Paleoceanography,2003,18(4),1100,doi:10.1029/2002PA000797.

    Google Scholar

    [11] Allen K A,Hönisch B,Eggins S M et al.Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulinauniversa[J].Earth and Planetarny Science Letters, 2011,309:291-301.

    Google Scholar

    [12] Sanyal A,Hemming N G,Broecker W S,et al.Oceanic pH control on the boron isotopic composition of foraminifera:Evidence from culture experiments[J].Paleoceanography, 1996,11(5):513-517.

    Google Scholar

    [13] Ni Y,Foster G L,Bailey T,et al.A core top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers[J].Paleoceanography,2007,22(3),PA3212, doi:10.1029/2006PA001337.

    Google Scholar

    [14] Hendry K R,Rickaby R E M,Meredith M P,et al.Controls on stable isotope and trace metal uptake in Neogloboquadrina pachyderma (sinistral)from an Antarctic sea-ice environment[J].Earth and Planetary Science Letters,2009,278:67-77.

    Google Scholar

    [15] Seki O,Foster G L,Schmidt D N et al.Alkenone and boronbased Pliocene pCO2 records[J].Earth and Planetary Science Letters,2010,292:201-211.

    Google Scholar

    [16] Traipati A K,Roberts C D,Eagle R A.Coupling of CO2 and Ice Sheet stability over major climate transitionsof the last 20 Million years[J].Science,2009,326:1394-1397.

    Google Scholar

    [17] Allen K A,Honisch B.The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry:A critical evaluation[J].Earth and Planetary Science Letters,2012,345:203-211.

    Google Scholar

    [18] Klochko K,Cody G D,Tossell J A,et al.Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR[J].Geochimicaet Cosmochimica Acta,2009,73:1890-1900.

    Google Scholar

    [19] Hönisch B,Bijma J,Russell A D,et al.The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells[J].Marine Micropaleontology,2003,49(1):87-96.

    Google Scholar

    [20] Elderfield H,Vautravers M,Cooper M.The relationship between shell size and Mg/Ca,Sr/Ca,δ18O,andδ13C of species of planktonic foraminifera[J].Geochemistry,Geophysics, Geosystems,2002,3(8):1-13.

    Google Scholar

    [21] Hönisch B,Hemming N G.Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells:Partial dissolution and shell size effects[J].Paleoceanography, 2004,19(4),PA4010,doi:10.1029/2004PA001026.

    Google Scholar

    [22] 仇晓华,李铁刚,常凤鸣,等.西菲律宾海15万年以来的浊流沉积及其成因[J].海洋地质与第四纪地质,2012,32(4):157-163.

    Google Scholar

    [QIU Xiaohua,LI Tiegang,CHANG Fengming,et al.Turbidite deposition record and its mechanism since 150 kaBP in western Philippine sea[J].Marine Geology and Quaternary Geology,2012,32(4):157-163.]

    Google Scholar

    [23] Lea D W,Pak D K,Spero H J.Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J].Science,2000,289(5485):1719-1724.

    Google Scholar

    [24] Erez J.The source of ions for biomineralization in foraminifera and their implications for paleoceanographicproxies[J]. Reviews in Mineralogy and Geochemistry,2003,54(1):115-149.

    Google Scholar

    [25] Schmidt D N,Renaud S,Bollmann J,et al.Size distribution of Holocene planktic foraminifer assemblages:biogeography, ecology and adaptation[J].Marine Micropaleontology,2004, 50(3):319-338.

    Google Scholar

    [26] Anderson O R,Faber W W.An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45Ca as a tracer:a recommended procedure for improved accuracy[J].The Journal of Foraminiferal Research,1984,14(4):303-308.

    Google Scholar

    [27] Tripati A K,Roberts C D,Eagle R A,et al.A 20 million year record of plankticforaminiferal B/Ca ratios:Systematics and uncertainties in pCO2 reconstructions[J].Geochimica et Cosmochimica Acta,2011,75(10):2582-2610.

    Google Scholar

    [28] Zeebe R E,Bijma J,Wolf-Gladrow D A.A diffusion-reaction model of carbon isotope fractionation in foraminifera[J].Marine Chemistry,1999,64(3):199-227.

    Google Scholar

    [29] Zeebe R E,Wolf-Gladrow D A,Bijma J,et al.Vital effects in foraminifera do not compromise the use of δ11B as a paleopH indicator:Evidence from modeling[J].Paleoceanography, 2003,18(2),1043,doi:10.1029/2003PA000881.

    Google Scholar

    [30] Gastrich M D.Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera[J].Journal of Phycology, 1987,23(4):623-632.

    Google Scholar

    [31] Spero H J,Parker S L.Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa,and its potential contribution to oceanic primary productivity[J].The Journal of Foraminiferal Research,1985,15(4):273-281.

    Google Scholar

    [32] Spero H J,Lerche I,Williams D F.Opening the carbon isotope "vital effect" black box,2,Quantitative model for interpreting foraminiferal carbon isotope data[J].Paleoceanography, 1991,6(6):639-655.

    Google Scholar

    [33] Rosenthal Y,Boyle E A.Factors controlling the fluoride content of planktonic foraminifera:An evaluation of its paleoceanographic applicability[J].Geochimica et Cosmochimica Acta,1993,57(2):335-346.

    Google Scholar

    [34] BrownS J,Elderfield H.Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution:Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography,1996,11(5):543-551.

    Google Scholar

    [35] Dekens P S,Lea D W,Pak D K,et al.Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J].Geochemistry,Geophysics,Geosystems, 2002,3(4):1-29.

    Google Scholar

    [36] De Villiers S.Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline[J].Deep Sea Research Part I:Oceanographic Research Papers,2005,52(5):671-680.

    Google Scholar

    [37] Archer D,Emerson S,Reimers C.Dissolution of calcite in deep-sea sediments:pH and O2 microelectrode results[J]. Geochimica et Cosmochimica Acta,1989,53(11):2831-2845.

    Google Scholar

    [38] Emerson S,Bender M.Carbon fluxes at the sediment-water interface of the deep-sea:calcium carbonate preservation[J]. Journal of Marine Research,1981,39:139-162.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(971) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint