China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2025 Vol. 36, No. 1
Article Contents

YIN Yueping, WANG Wenpei, XING Aiguo, HUANG Bolin, LI Bin, HAN Leiyan, JIN Shaoqiang, YANG Yong, ZHANG Chenyang. Research on dynamic erosion mechanism of submarine landslide: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 1-15. doi: 10.16031/j.cnki.issn.1003-8035.202502015
Citation: YIN Yueping, WANG Wenpei, XING Aiguo, HUANG Bolin, LI Bin, HAN Leiyan, JIN Shaoqiang, YANG Yong, ZHANG Chenyang. Research on dynamic erosion mechanism of submarine landslide: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 1-15. doi: 10.16031/j.cnki.issn.1003-8035.202502015

Research on dynamic erosion mechanism of submarine landslide: Review and prospects

More Information
  • The geological hazards of submarine landslides can cause serious damage to infrastructure such as offshore wind power, submarine optical cables, and marine platforms, posing a serious challenge to the major strategic task of building a maritime power and ensuring the geological safety of marine engineering. The article systematically reviews the research process of submarine landslide turbidity current geological hazards, summarizes the dynamic characteristics of submarine landslide-turbidity flow chain, dynamic erosion types, mechanisms of triggering, evolution, migration, erosion and sedimentation, theoretical models of erosion, and the influence of complex landforms such as uplift, canyons, and basins. A novel dynamic erosion approach is put forward of submarine landslide-turbidity flow chain, including quantitative, multiphase, whole process, erosion flow-state transformation. Finally, in view of the development of major projects such as offshore wind power, marine resource development, marine transportation, and marine engineering equipment, the geological model and identification technology are discussed of the erosion-prone structure of submarine landslide landslide-turbidity flow chain, as well as the composite, overlapping, and heterogeneous dynamic erosion mechanic model of the disaster chain, and the issues of prevention and control of boundary layer dynamic erosion.

  • 加载中
  • [1] CHOI C E,YU Jiantao,ZHANG Jiaqi. Review of the missing link between field and modeled submarine debris flows:Scale effects of physical modeling[J]. Earth Science Reviews,2024,258:104911. doi: 10.1016/j.earscirev.2024.104911

    CrossRef Google Scholar

    [2] MIDDLETON G. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences,1993,21:89 − 114. doi: 10.1146/annurev.ea.21.050193.000513

    CrossRef Google Scholar

    [3] YIN Yueping,LI Bin,GAO Yang,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66 − 101. doi: 10.1016/j.jrmge.2022.11.001

    CrossRef Google Scholar

    [4] FISHER R V. Submarine volcaniclastic rocks[J]. Geological Society,London,Special Publications,1984,16(1):5 − 27. doi: 10.1144/GSL.SP.1984.016.01.02

    CrossRef Google Scholar

    [5] LOCAT J,LEE H J. Submarine landslides:Advances and challenges[J]. Canadian Geotechnical Journal,2002,39(1):193 − 212. doi: 10.1139/t01-089

    CrossRef Google Scholar

    [6] BÖTTNER C,STEVENSON C J,ENGLERT R,et al. Extreme erosion and bulking in a giant submarine gravity flow[J]. Science Advances,2024,10(34):2584. doi: 10.1126/sciadv.adp2584

    CrossRef Google Scholar

    [7] PIPER D J W,COCHONAT P,MORRISON M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake:Initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology,1999,46(1):79 − 97. doi: 10.1046/j.1365-3091.1999.00204.x

    CrossRef Google Scholar

    [8] VANNESTE M,SULTAN N,GARZIGLIA S,et al. Seafloor instabilities and sediment deformation processes:The need for integrated,multi-disciplinary investigations[J]. Marine Geology,2014,352:183 − 214. doi: 10.1016/j.margeo.2014.01.005

    CrossRef Google Scholar

    [9] REN Zhiyuan,ZHAO Xi,LIU Hua. Numerical study of the landslide tsunami in the South China Sea using Herschel-Bulkley rheological theory[J]. Physics of Fluids,2019,31(5):056601. doi: 10.1063/1.5087245

    CrossRef Google Scholar

    [10] 年廷凯,沈月强,郑德凤,等. 海底滑坡链式灾害研究进展[J]. 工程地质学报,2021,29(6):1657 − 1675. [NIAN Tingkai,SHEN Yueqiang,ZHENG Defeng,et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology,2021,29(6):1657 − 1675. (in Chinese with English abstract)]

    Google Scholar

    NIAN Tingkai, SHEN Yueqiang, ZHENG Defeng, et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology, 2021, 29(6): 1657 − 1675. (in Chinese with English abstract)

    Google Scholar

    [11] HSU S K,KUO J,LO C L,et al. Turbidity currents,submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. Terrestrial,Atmospheric and Oceanic Sciences,2008,19(6):767. doi: 10.3319/TAO.2008.19.6.767(PT)

    CrossRef Google Scholar

    [12] 吴时国,秦志亮,王大伟,等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报,2011,54(12):3184 − 3195. [WU Shiguo,QIN Zhiliang,WANG Dawei,et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics,2011,54(12):3184 − 3195. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5733.2011.12.018

    CrossRef Google Scholar

    WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3184 − 3195. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2011.12.018

    CrossRef Google Scholar

    [13] LI Wei,LI Yan,OMOSANYA K O L,et al. Quantitative and geomorphologic parameterization of megaclasts within mass-transport complexes,offshore Taranaki Basin,New Zealand[J]. GSA Bulletin,2022,135(7/8):1828 − 1843.

    Google Scholar

    [14] STAGNA M D,MASELLI V,VAN VLIET A. Large-scale submarine landslide drives long-lasting regime shift in slope sediment deposition[J]. Geology,2023,51(2):167 − 173. doi: 10.1130/G50463.1

    CrossRef Google Scholar

    [15] KARSTENS J,HAFLIDASON H,BERNDT C,et al. Revised Storegga Slide reconstruction reveals two major submarine landslides 12,000 years apart[J]. Communications Earth & Environment,2023,4(1):55.

    Google Scholar

    [16] SUN Qiliang,WANG Qing,SHI Fengyan,et al. Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change[J]. Communications Earth & Environment,2023,434:P107745.

    Google Scholar

    [17] BLASIO F,ELVERHØI A,ENGVIK L,et al. Understanding the high mobility of subaqueous debris flows[J]. Norw J Geol,2006,86(3):275 − 284.

    Google Scholar

    [18] 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)

    Google Scholar

    [19] 张明,殷跃平,吴树仁,等. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报,2010,18(6):805 − 817. [ZHANG Ming,YIN Yueping,WU Shuren,et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology,2010,18(6):805 − 817. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2010.06.001

    CrossRef Google Scholar

    ZHANG Ming, YIN Yueping, WU Shuren, et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 2010, 18(6): 805 − 817. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.001

    CrossRef Google Scholar

    [20] HANCE J J. Submarine slope stability[D]. Austin:The University of Texas at Austin,2003:1 − 15.

    Google Scholar

    [21] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)]

    Google Scholar

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534 − 1551. (in Chinese with English abstract)

    Google Scholar

    [22] FAN Xuanmei,XU Qiang,ALONSO-RODRIGUEZ A,et al. Successive landsliding and damming of the Jinsha River in eastern Xizang,China:Prime investigation,early warning,and emergency response[J]. Landslides,2019,16(5):1003 − 1020. doi: 10.1007/s10346-019-01159-x

    CrossRef Google Scholar

    [23] 王立朝, 温铭生, 冯振, 等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the baige landslide at Jinshajiang River, Xizang, China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)]

    Google Scholar

    WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the baige landslide at Jinshajiang River, Xizang, China[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 1 − 9. (in Chinese with English abstract)

    Google Scholar

    [24] 冯文凯,张国强,白慧林,等. 金沙江“10•11” 白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415 − 425. [FENG Wenkai,ZHANG Guoqiang,BAI Huilin,et al. A preliminary analysis of the formation mechanism and development tendency of the huge baige landslide in Jinsha River on October 11,2018[J]. Journal of Engineering Geology,2019,27(2):415 − 425. (in Chinese with English abstract)]

    Google Scholar

    FENG Wenkai, ZHANG Guoqiang, BAI Huilin, et al. A preliminary analysis of the formation mechanism and development tendency of the huge baige landslide in Jinsha River on October 11, 2018[J]. Journal of Engineering Geology, 2019, 27(2): 415 − 425. (in Chinese with English abstract)

    Google Scholar

    [25] WANG Wenpei,YIN Yueping,ZHU Sainan,et al. Investigation and numerical modeling of the overloading-induced catastrophic rockslide avalanche in Baige,Xizang,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(4):1765 − 1779. doi: 10.1007/s10064-019-01664-2

    CrossRef Google Scholar

    [26] 何可,王玉峰,程谦恭,等. 高速远程滑坡底部裹挟机理研究现状及展望[J]. 工程地质学报,2024,32(3):904 − 917. [HE Ke,WANG Yufeng,CHENG Qiangong,et al. Research on the substrate entrainment dynamics of rock avalanches:State-of-the-art[J]. Journal of Engineering Geology,2024,32(3):904 − 917. (in Chinese with English abstract)]

    Google Scholar

    HE Ke, WANG Yufeng, CHENG Qiangong, et al. Research on the substrate entrainment dynamics of rock avalanches: State-of-the-art[J]. Journal of Engineering Geology, 2024, 32(3): 904 − 917. (in Chinese with English abstract)

    Google Scholar

    [27] CROSTA G B,IMPOSIMATO S,RODDEMAN D. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology,2009,109(1/2):135 − 145.

    Google Scholar

    [28] MILNE J. Sub-oceanic changes[J]. The Geographical Journal,1897,10(2):129. doi: 10.2307/1774597

    CrossRef Google Scholar

    [29] PUDASAINI S P,KRAUTBLATTER M. The mechanics of landslide mobility with erosion[J]. Nature Communications,2021,12(1):6793. doi: 10.1038/s41467-021-26959-5

    CrossRef Google Scholar

    [30] SASSA S,SEKIGUCHI H. Liqsedflow:Role of two-phase physics in subaqueous sediment gravity flows[J]. Soils and Foundations,2010,50(4):495 − 504. doi: 10.3208/sandf.50.495

    CrossRef Google Scholar

    [31] HUNGR O. A model for the runout analysis of rapid flow slides,debris flows,and avalanches[J]. Canadian Geotechnical Journal,1995,32(4):610 − 623. doi: 10.1139/t95-063

    CrossRef Google Scholar

    [32] HUNGR O. Simplified models of spreading flow of dry granular material[J]. Canadian Geotechnical Journal,2008,45(8):1156 − 1168. doi: 10.1139/T08-059

    CrossRef Google Scholar

    [33] 殷跃平,王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [YIN Yueping,WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1513 − 1521. (in Chinese with English abstract)

    Google Scholar

    [34] CAMPBELL C. Granular material flows – An overview[J]. Powder Technology,2006,162(3):208 − 229. doi: 10.1146/annurev.fl.22.010190.000421

    CrossRef Google Scholar

    [35] CAMPBELL C S. Self-lubrication for long runout landslides[J]. The Journal of Geology,1989,97(6):653 − 665. doi: 10.1086/629350

    CrossRef Google Scholar

    [36] ZHOU G G D,SUN Q C. Three-dimensional numerical study on flow regimes of dry granular flows by DEM[J]. Powder Technology,2013,239:115 − 127. doi: 10.1016/j.powtec.2013.01.057

    CrossRef Google Scholar

    [37] HU Wei,XU Qiang,MCSAVENEY M,et al. The intrinsic mobility of very dense grain flows[J]. Earth and Planetary Science Letters,2022,580(Sup C):117389. doi: 10.1016/j.jpgl.2022.117389

    CrossRef Google Scholar

    [38] ILSTAD T,DE BLASIO F V,ELVERHØI A,et al. On the frontal dynamics and morphology of submarine debris flows[J]. Marine Geology,2004,213(1/2/3/4):481 − 497.

    Google Scholar

    [39] MOHRIG D,MARR J G. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology,2003,20(6/7/8):883 − 899.

    Google Scholar

    [40] TALLING P J. On the frequency distribution of turbidite thickness[J]. Sedimentology,2001,48(6):1297 − 1329. doi: 10.1046/j.1365-3091.2001.00423.x

    CrossRef Google Scholar

    [41] TALLING P J,PEAKALL J,SPARKS R S J,et al. Experimental constraints on shear mixing rates and processes:Implications for the dilution of submarine debris flows[J]. Geological Society,London,Special Publications,2002,203(1):89 − 103. doi: 10.1144/GSL.SP.2002.203.01.06

    CrossRef Google Scholar

    [42] TALLING P J,AMY L A,WYNN R B,et al. Beds comprising debrite sandwiched within co-genetic turbidite:Origin and widespread occurrence in distal depositional environments[J]. Sedimentology,2004,51(1):163 − 194. doi: 10.1111/j.1365-3091.2004.00617.x

    CrossRef Google Scholar

    [43] ILSTAD T,ELVERHØI A,ISSLER D,et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio:A laboratory study using particle tracking[J]. Marine Geology,2004,213(1/2/3/4):415 − 438.

    Google Scholar

    [44] 钟广法. 超临界浊流之地貌动力学和沉积特征[J]. 沉积学报,2023,41(1):52 − 72. [ZHONG Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica,2023,41(1):52 − 72. (in Chinese with English abstract)]

    Google Scholar

    ZHONG Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica, 2023, 41(1): 52 − 72. (in Chinese with English abstract)

    Google Scholar

    [45] TALLING P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow:Deposits,theoretical and experimental analyses,and generalized models[J]. Geosphere,2013,9(3):460 − 488. doi: 10.1130/GES00793.1

    CrossRef Google Scholar

    [46] TALLING P J,PAULL C K,PIPER D J W. How are subaqueous sediment density flows triggered,what is their internal structure and how does it evolve?Direct observations from monitoring of active flows[J]. Earth-Science Reviews,2013,125:244 − 287. doi: 10.1016/j.earscirev.2013.07.005

    CrossRef Google Scholar

    [47] ABREU V,SULLIVAN M,PIRMEZ C,et al. Lateral accretion packages (LAPs):An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology,2003,20(6/7/8):631 − 648.

    Google Scholar

    [48] BREIEN H,DE BLASIO F V,ELVERHOI A,et al. Transport mechanisms of sand in deep-marine environments—insights based on laboratory experiments[J]. Journal of Sedimentary Research,2010,80(11):975 − 990. doi: 10.2110/jsr.2010.079

    CrossRef Google Scholar

    [49] ZHAO Enjin,DONG Youkou,TANG Yuezhao,et al. Numerical investigation of hydrodynamic characteristics and local scour mechanism around submarine pipelines under joint effect of solitary waves and currents[J]. Ocean Engineering,2021,222:108553. doi: 10.1016/j.oceaneng.2020.108553

    CrossRef Google Scholar

    [50] 王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52 − 65. [WANG Dawei,BAI Hongxin,WU Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science,2018,33(1):52 − 65. (in Chinese with English abstract)] doi: 10.11867/j.issn.1001-8166.2018.01.0052

    CrossRef Google Scholar

    WANG Dawei, BAI Hongxin, WU Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52 − 65. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2018.01.0052

    CrossRef Google Scholar

    [51] KNELLER B,MCCAFFREY W. Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope; deflection,reflection,and facies variation[J]. Journal of Sedimentary Research,1999,69(5):980 − 991. doi: 10.2110/jsr.69.980

    CrossRef Google Scholar

    [52] 谈明轩,朱筱敏,耿名扬,等. 沉积物重力流流体转化沉积—混合事件层[J]. 沉积学报,2016,34(6):1108 − 1119. [TAN Mingxuan,ZHU Xiaomin,GENG Mingyang,et al. The flow transforming deposits of sedimentary gravity flow-hybrid event bed[J]. Acta Sedimentologica Sinica,2016,34(6):1108 − 1119. (in Chinese with English abstract)]

    Google Scholar

    TAN Mingxuan, ZHU Xiaomin, GENG Mingyang, et al. The flow transforming deposits of sedimentary gravity flow-hybrid event bed[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1108 − 1119. (in Chinese with English abstract)

    Google Scholar

    [53] 葛智渊,许鸿翔. 浊流对复杂构造地貌的水动力和沉积响应[J]. 古地理学报,2023,25(5):1090 − 1117. [GE Zhiyuan,XU Hongxiang. Hydraulic and sedimentary responses of turbidity current to structurally-controlled topography[J]. Journal of Palaeogeography (Chinese Edition),2023,25(5):1090 − 1117. (in Chinese with English abstract)] doi: 10.7605/gdlxb.2023.05.084

    CrossRef Google Scholar

    GE Zhiyuan, XU Hongxiang. Hydraulic and sedimentary responses of turbidity current to structurally-controlled topography[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(5): 1090 − 1117. (in Chinese with English abstract) doi: 10.7605/gdlxb.2023.05.084

    CrossRef Google Scholar

    [54] TALLING P J,ALLIN J,ARMITAGE D A,et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research,2015,85(2):153 − 169. doi: 10.2110/jsr.2015.03

    CrossRef Google Scholar

    [55] REN Yupeng,ZHANG Yi,XU Guohui,et al. The failure propagation of weakly stable sediment:A reason for the formation of high-velocity turbidity currents in submarine canyons[J]. Journal of Oceanology and Limnology,2023,41(1):100 − 117. doi: 10.1007/s00343-022-1285-0

    CrossRef Google Scholar

    [56] HUANG Heqing,IMRAN J,PIRMEZ C. Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms[J]. Journal of Hydraulic Engineering,2008,134(9):1199 − 1209. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1199)

    CrossRef Google Scholar

    [57] HUANG H,IMRAN J,PIRMEZ C. Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research:Oceans,2007,112(C1):C01014.

    Google Scholar

    [58] TALLING P J,BAKER M L,POPE E L,et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications,2022,13(1):4193. doi: 10.1038/s41467-022-31689-3

    CrossRef Google Scholar

    [59] 王玉峰,林棋文,李坤,等. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报,2021,43(1):164 − 181. [WANG Yufeng,LIN Qiwen,LI Kun,et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment,2021,43(1):164 − 181. (in Chinese with English abstract)]

    Google Scholar

    WANG Yufeng, LIN Qiwen, LI Kun, et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 164 − 181. (in Chinese with English abstract)

    Google Scholar

    [60] JOHN MURRAY. The report on the scientific results of the voyage of h. m. s challenger during the years 1873-76[M].Shanghai:East China Normal University Press,2018:1 − 7.

    Google Scholar

    [61] SAXOV S. Marine slides-some introductory remarks[C]//In:Saxov,S.,Nieuwenhuis,J. K. Marine Slides and Other Mass Movements. NATO Conference Series,Boston,MA, Springer,1982.

    Google Scholar

    [62] 湖泊及流域学科发展战略研究秘书组. 湖泊及流域科学研究进展与展望[J]. 湖泊科学,2002,14(4):289 − 300. [The Research Group of the Development Strategy of Limnology and Watershed Sciences. The development review and future prospect of the research in limnology and watershed sciences[J]. Journal of Lake Science,2002,14(4):289 − 300. (in Chinese)] doi: 10.18307/2002.0401

    CrossRef Google Scholar

    The Research Group of the Development Strategy of Limnology and Watershed Sciences. The development review and future prospect of the research in limnology and watershed sciences[J]. Journal of Lake Science, 2002, 14(4): 289 − 300. (in Chinese) doi: 10.18307/2002.0401

    CrossRef Google Scholar

    [63] HEIM A. Bergsturz und menschenleben[M]. Zütich:Naturforschenden Gesellschaft,1932:218.

    Google Scholar

    [64] FISHER R V,SMITH A L,ROOBOL M J. Destruction of St. Pierre,Martinique,by ash-cloud surges,may 8 and 20,1902[J]. Geology,1980,8(10):472. doi: 10.1130/0091-7613(1980)8<472:DOSPMB>2.0.CO;2

    CrossRef Google Scholar

    [65] HEEZEN B C,EWING W M. Turbidity currents and submarine slumps,and the 1929 Grand Banks [Newfound land] earthquake[J]. American Journal of Science,1952,250(12):849 − 873. doi: 10.2475/ajs.250.12.849

    CrossRef Google Scholar

    [66] KUENEN P H,MIGLIORINI C I. Turbidity currents as a cause of graded bedding[J]. Journal of Geology,1950,58(2):91 − 127. doi: 10.1086/625710

    CrossRef Google Scholar

    [67] BATES R L,JACKSON J A. Glossary of geology (2nd)[M]. Virginia:American Geological Institute,1980:751.

    Google Scholar

    [68] MULDER T,ZARAGOSI S,JOUANNEAU J M,et al. Deposits related to the failure of the Malpasset Dam in 1959 An analogue for hyperpycnal deposits from jökulhlaups[J]. Marine Geology,2009,260(1/2/3/4):81 − 89.

    Google Scholar

    [69] 刘锡清. 中国海洋环境地质学[M]. 北京:海洋出版社,2006:15 − 18. [LIU Xiqing. Marine environmental geology of China [M]. Beijing:Marine Ocean Publishing House,2006:15 − 18. (in Chinese)]

    Google Scholar

    LIU Xiqing. Marine environmental geology of China [M]. Beijing: Marine Ocean Publishing House, 2006: 15 − 18. (in Chinese)

    Google Scholar

    [70] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展,2013,28(5):552 − 558. [XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science,2013,28(5):552 − 558. (in Chinese with English abstract)] doi: 10.11867/j.issn.1001-8166.2013.05.0552

    CrossRef Google Scholar

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552 − 558. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2013.05.0552

    CrossRef Google Scholar

    [71] 朱超祁,贾永刚,刘晓磊,等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质,2015,35(6):153 − 163. [ZHU Chaoqi,JIA Yonggang,LIU Xiaolei,et al. Classification and genetic machanism of submarine landslide:A review[J]. Marine Geology & Quaternary Geology,2015,35(6):153 − 163. (in Chinese with English abstract)]

    Google Scholar

    ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic machanism of submarine landslide: A review[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 153 − 163. (in Chinese with English abstract)

    Google Scholar

    [72] TAPPIN D R,WATTS P,MCMURTRY G M,et al. The sissano,Papua new Guinea tsunami of July 1998—Offshore evidence on the source mechanism[J]. Marine Geology,2001,175(1/2/3/4):1 − 23.

    Google Scholar

    [73] BOUMA A H. Sedimentology of some Flysch deposits; a graphic approach to facies interpretation[M]. Amsterdam:Elsevier,1962:168.

    Google Scholar

    [74] DOTT R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin,1963,47(1):104 − 128.

    Google Scholar

    [75] KUENEN P H. Emplacement of flysch-type sand beds[J]. Sedimentology,1967,9(3):203 − 243. doi: 10.1111/j.1365-3091.1967.tb02039.x

    CrossRef Google Scholar

    [76] MIDDLETON G V,HAMPTON M A. Sediment gravity flows:Mechanics of flow and deposition[C]//MIDDLETON G V,BOUMA A H,eds. Turbidites and Deep-Water Sedimentation. Los Angeles,California:SEPM Pacific Section,1973:1 − 38.

    Google Scholar

    [77] MOORE D G. Submarine slides[M].Developments in Geotechnical Engineering. Elsevier,1978,14:563 − 604.

    Google Scholar

    [78] DAMUTH J E. Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology,1979,7:520 − 523.

    Google Scholar

    [79] LOWE D. Sediment gravity flows:Their classification and some problems of application to natural flows and deposits [J]. Special Publications,1979,27:75 − 82.

    Google Scholar

    [80] SHANMUGAM G. High-density turbidity currents; are they sandy debris flows?[J]. Journal of Sedimentary Research,1996,66(1):2 − 10. doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D

    CrossRef Google Scholar

    [81] MULDER T,COCHON P. Classification of offshore mass movements[J]. SEPM Journal of Sedimentary Research,1996,66(1):43 − 57.

    Google Scholar

    [82] 贾永刚,单红仙. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报,2000,11(1):1 − 5. [JIA Yonggang,SHAN Hongxian. Investigation and study of slope unstability of subaqueous delta of morden Yellow River[J]. The Chinese Journal of Geological Hazard and Control,2000,11(1):1 − 5. (in Chinese with English abstract)] doi: 10.3969/j.issn.1003-8035.2000.01.001

    CrossRef Google Scholar

    JIA Yonggang, SHAN Hongxian. Investigation and study of slope unstability of subaqueous delta of morden Yellow River[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2000.01.001

    CrossRef Google Scholar

    [83] MIDDLETON G V. Experiments on density and turbidity currents:Iii. deposition of sediment[J]. Canadian Journal of Earth Sciences,1967,4(3):475 − 505. doi: 10.1139/e67-025

    CrossRef Google Scholar

    [84] HAMPTON M A. The role of subaqueous debris flow in generating turbidity currents[J]. SEPM Journal of Sedimentary Research,1972,42(3):475 − 505.

    Google Scholar

    [85] BRITTER R E,SIMPSON J E. Experiments on the dynamics of a gravity current head[J]. Journal of Fluid Mechanics,1978,88(2):223 − 240. doi: 10.1017/S0022112078002074

    CrossRef Google Scholar

    [86] SASSA K. Geotechnical model for the motion of landslides[J]. Special Lecture of 5th International Symposium onLandslides, Lausanne,1988,1(7):37 − 55.

    Google Scholar

    [87] GARCIA M,PARKER G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research:Oceans,1993,98(C3):4793 − 4807. doi: 10.1029/92JC02404

    CrossRef Google Scholar

    [88] WOODS A W,BURSIK M I. A laboratory study of ash flows[J]. Journal of Geophysical Research:Solid Earth,1994,99(B3):4375 − 4394. doi: 10.1029/93JB02224

    CrossRef Google Scholar

    [89] 赵连军,张红武. 黄河下游河道水流摩阻特性的研究[J]. 人民黄河,1997,19(9):17 − 20. [ZHAO Lianjun,ZHANG Hongwu. Study of flow frictional characteristics in the lower Yellow River channel[J]. Yellow River,1997,19(9):17 − 20. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Lianjun, ZHANG Hongwu. Study of flow frictional characteristics in the lower Yellow River channel[J]. Yellow River, 1997, 19(9): 17 − 20. (in Chinese with English abstract)

    Google Scholar

    [90] MOHRIG D,ELLIS C,PARKER G,et al. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin,1998,110(3):387 − 394. doi: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2

    CrossRef Google Scholar

    [91] MARR J G,HARFF P A,SHANMUGAM G,et al. Experiments on subaqueous sandy gravity flows:The role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin,2001,113(11):1377 − 1386. doi: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2

    CrossRef Google Scholar

    [92] MULDER T,ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology,2001,48(2):269 − 299. doi: 10.1046/j.1365-3091.2001.00360.x

    CrossRef Google Scholar

    [93] FELIX M,PEAKALL J. Transformation of debris flows into turbidity currents:Mechanisms inferred from laboratory experiments[J]. Sedimentology,2006,53(1):107 − 123. doi: 10.1111/j.1365-3091.2005.00757.x

    CrossRef Google Scholar

    [94] ELVERHOI A,BREIEN H,DE BLASIO F V,et al. Submarine landslides and the importance of the initial sediment composition for Run-out length and final deposit[J]. Ocean Dynamics,2010,60(4):1027 − 1046. doi: 10.1007/s10236-010-0317-z

    CrossRef Google Scholar

    [95] POSTMA G,KLEVERLAAN K,CARTIGNY M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences,and consequences for the Bouma facies model[J]. Sedimentology,2014,61(7):2268 − 2290. doi: 10.1111/sed.12135

    CrossRef Google Scholar

    [96] POSTMA G,CARTIGNY M J B. Supercritical and subcritical turbidity currents and their deposits:A synthesis[J]. Geology,2014,42(11):987 − 990. doi: 10.1130/G35957.1

    CrossRef Google Scholar

    [97] MANICA R. Sediment gravity flows:Study based on experimental simulations[M].Hydrodynamics - Natural Water Bodies,Prof. Harry Schulz (Ed.) InTech,2012:263 − 286.

    Google Scholar

    [98] HAUGHTON P,DAVIS C,MCCAFFREY W,et al. Hybrid sediment gravity flow deposits–classification,origin and significance[J]. Marine and Petroleum Geology,2009,26(10):1900 − 1918. doi: 10.1016/j.marpetgeo.2009.02.012

    CrossRef Google Scholar

    [99] IMRAN J,HARFF P,PARKER G. A numerical model of submarine debris flow with graphical user interface[J]. Computers & Geosciences,2001,27(6):717 − 729.

    Google Scholar

    [100] MCDOUGALL S,HUNGR O. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal,2005,42(5):1437 − 1448. doi: 10.1139/t05-064

    CrossRef Google Scholar

    [101] LU Yang,LIU Xiaolei,XIE Xiaotian,et al. Particle-scale analysis on dynamic response of turbidity currents to sediment concentration and bedforms[J]. Physics of Fluids,2024,36(3):033316. doi: 10.1063/5.0191219

    CrossRef Google Scholar

    [102] KANG Chao,CHAN D. A progressive entrainment runout model for debris flow analysis and its application[J]. Geomorphology,2018,323:25 − 40. doi: 10.1016/j.geomorph.2018.09.003

    CrossRef Google Scholar

    [103] WANG Wenpei,YIN Yueping,WEI Yunjie,et al. Investigation and characteristic analysis of a high-position rockslide avalanche in Fangshan District,Beijing,China[J]. Bulletin of Engineering Geology and the Environment,2021,80(3):2069 − 2084. doi: 10.1007/s10064-020-02098-x

    CrossRef Google Scholar

    [104] 孙永福,黄波林,赵永波. 基于物理试验的海底滑坡涌浪研究[J]. 水文地质工程地质,2018,45(1):116 − 122. [SUN Yongfu,HUANG Bolin,ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology,2018,45(1):116 − 122. (in Chinese with English abstract)]

    Google Scholar

    SUN Yongfu, HUANG Bolin, ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 116 − 122. (in Chinese with English abstract)

    Google Scholar

    [105] STRAUSS M,GLINSKY M E. Turbidity current flow over an erodible obstacle and phases of sediment wave generation[J]. Journal of Geophysical Research:Oceans,2012,117(C6):C06007.

    Google Scholar

    [106] SOUTTER E L,BELL D,CUMBERPATCH Z A,et al. The influence of confining topography orientation on experimental turbidity currents and geological implications[J]. Frontiers in Earth Science,2021,8:540633. doi: 10.3389/feart.2020.540633

    CrossRef Google Scholar

    [107] CHEN Chanmao,HOLLINGSWORTH J,CLARK M K,et al. Erosional cascade during the 2021 melamchi flood[J]. Nature Geoscience,2024,18(1):32 − 36.

    Google Scholar

    [108] SINCLAIR H D,TOMASSO M. Depositional evolution of confined turbidite basins[J]. Journal of Sedimentary Research,2002,72(4):451 − 456. doi: 10.1306/111501720451

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(796) PDF downloads(65) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint