China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2025 Vol. 36, No. 5
Article Contents

HUANG Wenxuan, LAN Hengxing, GAO Xing, WANG Wei, WU Yuming, LI Wenping, LIU Jie, LI Langping. Importance analysis of seismic landslide influencing factors on the eastern margin of the Qinghai-Xizang Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(5): 1-20. doi: 10.16031/j.cnki.issn.1003-8035.202407006
Citation: HUANG Wenxuan, LAN Hengxing, GAO Xing, WANG Wei, WU Yuming, LI Wenping, LIU Jie, LI Langping. Importance analysis of seismic landslide influencing factors on the eastern margin of the Qinghai-Xizang Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(5): 1-20. doi: 10.16031/j.cnki.issn.1003-8035.202407006

Importance analysis of seismic landslide influencing factors on the eastern margin of the Qinghai-Xizang Plateau

More Information
  • The spatial distribution of seismic landslides is influenced by a wide range of factors. Understanding the relative importance of these factor is crucial for accurately predicting seismic landslide risks. However, most recently studies on factor importance have focused on individual earthquake events, making it difficult to identify overarching patterns and differences across multiple cases. This study focuses on the eastern margin of the Qinghai-Xizang Plateau and analyzes six earthquake-induced landslide events. Using the decisiveness (DC), we quantitatively assessed the absolute importance of 14 influencing factors: seismic intensity, seismic fault distance, geologic age, non-seismic fault distance, elevation, slope, aspect, geomorphology type, average annual precipitation, river distance, soil type, vegetation type, land use type, and distance to roads. These factors are categorized into six groups: seismic, geo-tectonic, topographic-geomorphic, meteorological-hydrological, soil-vegetation, and human-activity. The results show that: overall, seismic, geo-tectonic, topographic-geomorphic, and meteorological-hydrological factors have a greater influence on seismic landslide occurence, whereas soil-vegetation and human-activity factors are less significant. Moreover, the importance of individual factors varies with earthquake magnitude: for larger-scale earthquakes seismic and geo-tectonic factors dominates; for smaller-scale earthquakes, topographic and hydrological conditions are more influential. By ensuring consistency in the landslide and influencing factor datasets and employing an absolute importance assessment approach across multiple cases, this study provides a systematic analysis of the key drivers of seismic landslides. The findings offer valuable insights for seismic landslide risk assessment and mitigation strategies.

  • 加载中
  • [1] 孟和, 帕尔哈提·祖努, 尚彦军, 等. 地震滑坡研究现状与展望[J]. 新疆地质, 2023, 41(2): 276-283. [MENG He, Parhat Zunu, SHANG Yanjun, et al. Current status and prospects of research on earthquake landslides[J]. Xinjiang Geology, 2023, 41(2): 276-283. (in Chinese with English abstract)]

    Google Scholar

    MENG He, Parhat Zunu, SHANG Yanjun, et al. Current status and prospects of research on earthquake landslides[J]. Xinjiang Geology, 2023, 41(2): 276-283. (in Chinese with English abstract)

    Google Scholar

    [2] BROECKX J, ROSSI M, LIJNEN K, et al. Landslide mobilization rates: A global analysis and model[J]. Earth-Science Reviews, 2020, 201: 102972. doi: 10.1016/j.earscirev.2019.102972

    CrossRef Google Scholar

    [3] 张永双. 我国地震地质灾害特点与监测防治进展[J]. 城市与减灾, 2018(3): 9 − 18. [ZHANG Yongshuang. Characteristics of earthquake induced geological disasters in China and their progress of monitoring, prevention and control[J]. City and Disaster Reduction, 2018(3): 9 − 18. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-0495.2018.03.003

    CrossRef Google Scholar

    ZHANG Yongshuang. Characteristics of earthquake induced geological disasters in China and their progress of monitoring, prevention and control[J]. City and Disaster Reduction, 2018(3): 9 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-0495.2018.03.003

    CrossRef Google Scholar

    [4] 周洪福, 方甜, 韦玉婷. 国内外地震滑坡研究: 现状、问题与展望[J]. 沉积与特提斯地质, 2023, 43(3): 615 − 628. [ZHOU Hongfu, FANG Tian, WEI Yuting. Research situations and suggestions on earthquake-induced landslides[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(3): 615 − 628. (in Chinese with English abstract)]

    Google Scholar

    ZHOU Hongfu, FANG Tian, WEI Yuting. Research situations and suggestions on earthquake-induced landslides[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(3): 615 − 628. (in Chinese with English abstract)

    Google Scholar

    [5] MORALES B, LIZAMA E, SOMOS-VALENZUELA M A, et al. A comparative machine learning approach to identify landslide triggering factors in northern Chilean Patagonia[J]. Landslides, 2021, 18(8): 2767 − 2784. doi: 10.1007/s10346-021-01675-9

    CrossRef Google Scholar

    [6] SUN Xiaofei, YUAN Linguo, TAO Shiqi, et al. A novel landslide susceptibility optimization framework to assess landslide occurrence probability at the regional scale for environmental management[J]. Journal of Environmental Management, 2022, 322: 116108. doi: 10.1016/j.jenvman.2022.116108

    CrossRef Google Scholar

    [7] TONG Zhongling, GUAN Qingtao, ARABAMERI A, et al. Application of novel ensemble models to improve landslide susceptibility mapping reliability[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(8): 309. doi: 10.1007/s10064-023-03328-8

    CrossRef Google Scholar

    [8] ALQADHI S, MALLICK J, ALKAHTANI M, et al. Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management[J]. Natural Hazards, 2024, 120(4): 3719 − 3747. doi: 10.1007/s11069-023-06357-4

    CrossRef Google Scholar

    [9] MIAO Fasheng, RUAN Qiuyu, WU Yiping, et al. Landslide dynamic susceptibility mapping base on machine learning and the PS-InSAR coupling model[J]. Remote Sensing, 2023, 15(22): 5427. doi: 10.3390/rs15225427

    CrossRef Google Scholar

    [10] TANYU B F, ABBASPOUR A, ALIMOHAMMADLOU Y, et al. Landslide susceptibility analyses using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets[J]. Catena, 2021, 203: 105355. doi: 10.1016/j.catena.2021.105355

    CrossRef Google Scholar

    [11] CHEN Li, MA Peifeng, YU Chang, et al. Landslide susceptibility assessment in multiple urban slope settings with a landslide inventory augmented by InSAR techniques[J]. Engineering Geology, 2023, 327: 107342. doi: 10.1016/j.enggeo.2023.107342

    CrossRef Google Scholar

    [12] YAO Jiaming, YAO Xin, ZHAO Zheng, et al. Performance comparison of landslide susceptibility mapping under multiple machine-learning based models considering InSAR deformation: A case study of the upper Jinsha River[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2212833. doi: 10.1080/19475705.2023.2212833

    CrossRef Google Scholar

    [13] FAN Xuanmei, YUNUS A P, SCARINGI G, et al. Rapidly evolving controls of landslides after a strong earthquake and implications for hazard assessments[J]. Geophysical Research Letters, 2021, 48(1): e2020GL090509. doi: 10.1029/2020GL090509

    CrossRef Google Scholar

    [14] XU Chong, XU Xiwei, YAO Xin, et al. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2014, 11(3): 441 − 461. doi: 10.1007/s10346-013-0404-6

    CrossRef Google Scholar

    [15] YAMAGUCHI S, KASAI M. A new index representative of seismic cracks to assess post-seismic landslide susceptibility[J]. Transactions in GIS, 2022, 26(2): 1040 − 1061. doi: 10.1111/tgis.12900

    CrossRef Google Scholar

    [16] SAHIN E K. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping[J]. Geocarto International, 2022, 37(9): 2441 − 2465. doi: 10.1080/10106049.2020.1831623

    CrossRef Google Scholar

    [17] KAHAL A Y, ABDELRAHMAN K, ALFAIFI H J, et al. Landslide hazard assessment of the Neom promising city, northwestern Saudi Arabia: An integrated approach[J]. Journal of King Saud University - Science, 2021, 33(2): 101279. doi: 10.1016/j.jksus.2020.101279

    CrossRef Google Scholar

    [18] PAL S C, CHAKRABORTTY R, SAHA A, et al. Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian- and tree-based models[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(1): 55. doi: 10.1007/s10064-021-02546-2

    CrossRef Google Scholar

    [19] GAO Jiangping, SHI Xiangyang, LI Linghui, et al. Assessment of landslide susceptibility using different machine learning methods in Longnan City, China[J]. Sustainability, 2022, 14(24): 16716. doi: 10.3390/su142416716

    CrossRef Google Scholar

    [20] WANG Xuewen, WANG Xianmin, ZHANG Xinlong, et al. Near real-time spatial prediction of earthquake-induced landslides: A novel interpretable self-supervised learning method[J]. International Journal of Digital Earth, 2023, 16(1): 1885 − 1906. doi: 10.1080/17538947.2023.2216029

    CrossRef Google Scholar

    [21] CHEN Zhuo, SONG Danqing, DU Yumin, et al. Investigation on the spatial distribution of landslides in Sichuan Province, southwest China[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2232085. doi: 10.1080/19475705.2023.2232085

    CrossRef Google Scholar

    [22] 史丙新, 管勇, 亢川川. 汶川、芦山和九寨沟地震滑坡各影响因子贡献对比分析[J]. 四川地震, 2020(3): 1 − 7. [SHI Bingxin, GUAN Yong, KANG Chuanchuan. Comparative analysis of the contribution of various influencing factors in Wenchuan Lushan and Jiuzhaigou earthquake landslides[J]. Earthquake Research in Sichuan, 2020(3): 1 − 7. (in Chinese with English abstract)]

    Google Scholar

    SHI Bingxin, GUAN Yong, KANG Chuanchuan. Comparative analysis of the contribution of various influencing factors in Wenchuan Lushan and Jiuzhaigou earthquake landslides[J]. Earthquake Research in Sichuan, 2020(3): 1 − 7. (in Chinese with English abstract)

    Google Scholar

    [23] HE Qian, WANG Ming, LIU Kai. Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest[J]. Geomorphology, 2021, 391: 107889. doi: 10.1016/j.geomorph.2021.107889

    CrossRef Google Scholar

    [24] DONG Jiahui, NIU Ruiqing, CHEN Tao, et al. Assessing landslide susceptibility using improved machine learning methods and considering spatial heterogeneity for the Three Gorges Reservoir Area, China[J]. Natural Hazards, 2024, 120(2): 1113 − 1140. doi: 10.1007/s11069-023-06235-z

    CrossRef Google Scholar

    [25] BARELLA C F, SOBREIRA F G, ZÊZERE J L. A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3205 − 3221. doi: 10.1007/s10064-018-1341-3

    CrossRef Google Scholar

    [26] BLAHUT J, VAN WESTEN C J, STERLACCHINI S. Analysis of landslide inventories for accurate prediction of debris-flow source areas[J]. Geomorphology, 2010, 119(1/2): 36 − 51.

    Google Scholar

    [27] LI Langping, LAN Hengxing. Analytical ‘decisiveness’ as a robust measure of the absolute importance of landslide predisposing factors[J]. International Journal of Digital Earth, 2024, 17(1): 2356161. doi: 10.1080/17538947.2024.2356161

    CrossRef Google Scholar

    [28] 王绪本, 余年, 高嵩, 等. 青藏高原东缘地壳上地幔电性结构研究进展[J]. 地球物理学报, 2017, 60(6): 2350 − 2370. [WANG Xuben, YU Nian, GAO Song, et al. Research progress in research on electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2017, 60(6): 2350 − 2370. (in Chinese with English abstract)]

    Google Scholar

    WANG Xuben, YU Nian, GAO Song, et al. Research progress in research on electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2017, 60(6): 2350 − 2370. (in Chinese with English abstract)

    Google Scholar

    [29] 李丹丹, 唐新功, 熊治涛. 青藏高原东缘地壳密度结构及其地球动力学意义[J]. 地震地质, 2023, 45(4): 936 − 951. [LI Dandan, TANG Xingong, XIONG Zhitao. Crustal density structure of the eastern Tibetan Plateau and its geodynamic implications[J]. Seismology and Geology, 2023, 45(4): 936 − 951. (in Chinese with English abstract)]

    Google Scholar

    LI Dandan, TANG Xingong, XIONG Zhitao. Crustal density structure of the eastern Tibetan Plateau and its geodynamic implications[J]. Seismology and Geology, 2023, 45(4): 936 − 951. (in Chinese with English abstract)

    Google Scholar

    [30] 高原, 石玉涛, 陈安国. 青藏高原东缘地震各向异性、应力及汶川地震影响[J]. 科学通报, 2018, 63(19): 1934 − 1948. [GAO Yuan, SHI Yutao, CHEN Anguo. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the Ms8.0 Wenchuan earthquake[J]. Chinese Science Bulletin, 2018, 63(19): 1934 − 1948. (in Chinese with English abstract)] doi: 10.1360/N972018-00317

    CrossRef Google Scholar

    GAO Yuan, SHI Yutao, CHEN Anguo. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the Ms8.0 Wenchuan earthquake[J]. Chinese Science Bulletin, 2018, 63(19): 1934 − 1948. (in Chinese with English abstract) doi: 10.1360/N972018-00317

    CrossRef Google Scholar

    [31] 程远志, 韩波, 孔彦龙, 等. 青藏高原东缘甘孜断裂带地壳电性结构与孕震构造[J]. 地球物理学报, 2023, 66(8): 3273 − 3289. [CHENG Yuanzhi, HAN Bo, KONG Yanlong, et al. Crustal electrical structure beneath the Garzê fault in eastern margin of Tibetan Plateau and seismogenic tectonic[J]. Chinese Journal of Geophysics, 2023, 66(8): 3273 − 3289. (in Chinese with English abstract)] doi: 10.6038/cjg2023R0125

    CrossRef Google Scholar

    CHENG Yuanzhi, HAN Bo, KONG Yanlong, et al. Crustal electrical structure beneath the Garzê fault in eastern margin of Tibetan Plateau and seismogenic tectonic[J]. Chinese Journal of Geophysics, 2023, 66(8): 3273 − 3289. (in Chinese with English abstract) doi: 10.6038/cjg2023R0125

    CrossRef Google Scholar

    [32] 石玉涛, 高原, 张永久, 等. 松潘—甘孜地块东部、川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 2013, 56(2): 481 − 494. [SHI Yutao, GAO Yuan, ZHANG Yongjiu, et al. Shear-wave splitting in the crust in Eastern Songpan-Garzê block, Sichuan-Yunnan block and Western Sichuan Basin[J]. Chinese Journal of Geophysics, 2013, 56(2): 481 − 494. (in Chinese with English abstract)]

    Google Scholar

    SHI Yutao, GAO Yuan, ZHANG Yongjiu, et al. Shear-wave splitting in the crust in Eastern Songpan-Garzê block, Sichuan-Yunnan block and Western Sichuan Basin[J]. Chinese Journal of Geophysics, 2013, 56(2): 481 − 494. (in Chinese with English abstract)

    Google Scholar

    [33] GAO Yuan, WANG Qiong, ZHAO Bo, et al. A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan Ms7.0 earthquake of 20 April 2013 in Sichuan, China[J]. Science China Earth Sciences, 2014, 57(9): 2036 − 2044. doi: 10.1007/s11430-014-4827-2

    CrossRef Google Scholar

    [34] XU Xiwei, WEN Xueze, HAN Zhujun, et al. Lushan Ms7.0 earthquake: A blind reserve-fault event[J]. Chinese Science Bulletin, 2013, 58(28): 3437 − 3443.

    Google Scholar

    [35] 郑文俊, 闵伟, 何文贵, 等. 2013年甘肃岷县漳县6.6级地震震害分布特征及发震构造分析[J]. 地震地质, 2013, 35(3): 604 − 615. [ZHENG Wenjun, MIN Wei, HE Wengui, et al. Distribution of the related disaster and the causative tectonic of the Minxian-Zhanxian Ms6.6 earthquake on July 22, 2013, Gansu, China[J]. Seismology and Geology, 2013, 35(3): 604 − 615. (in Chinese with English abstract)]

    Google Scholar

    ZHENG Wenjun, MIN Wei, HE Wengui, et al. Distribution of the related disaster and the causative tectonic of the Minxian-Zhanxian Ms6.6 earthquake on July 22, 2013, Gansu, China[J]. Seismology and Geology, 2013, 35(3): 604 − 615. (in Chinese with English abstract)

    Google Scholar

    [36] 程佳, 刘杰, 徐锡伟, 等. 大凉山次级块体内强震发生的构造特征与2014年鲁甸6.5级地震对周边断层的影响[J]. 地震地质, 2014, 36(4): 1228 − 1243. [CHENG Jia, LIU Jie, XU Xiwei, et al. Tectonic characteristics of strong earthquakes in daliangshan sub-block and impact of the Ms6.5 Ludian earthquake in 2014 on the surrounding faults[J]. Seismology and Geology, 2014, 36(4): 1228 − 1243. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4967.2014.04.023

    CrossRef Google Scholar

    CHENG Jia, LIU Jie, XU Xiwei, et al. Tectonic characteristics of strong earthquakes in daliangshan sub-block and impact of the Ms6.5 Ludian earthquake in 2014 on the surrounding faults[J]. Seismology and Geology, 2014, 36(4): 1228 − 1243. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2014.04.023

    CrossRef Google Scholar

    [37] 申星, 梁洪宝, 宋成科. 泸定Ms6.8地震震前变形特征及鲜水河断裂南东段地震活动性[J]. 大地测量与地球动力学, 2024, 44(1): 69 − 74. [SHEN Xing, LIANG Hongbao, SONG Chengke. Deformation characteristics before the Luding Ms6.8 earthquake and seismicity of the southeast section of the Xianshuihe fault[J]. Journal of Geodesy and Geodynamics, 2024, 44(1): 69 − 74. (in Chinese with English abstract)]

    Google Scholar

    SHEN Xing, LIANG Hongbao, SONG Chengke. Deformation characteristics before the Luding Ms6.8 earthquake and seismicity of the southeast section of the Xianshuihe fault[J]. Journal of Geodesy and Geodynamics, 2024, 44(1): 69 − 74. (in Chinese with English abstract)

    Google Scholar

    [38] SCHMITT R G, TANYAS H, JESSEE M A N, et al. An open repository of earthquake-triggered ground-failure inventories[R]//Data Series. U. S. Geological Survey, 2017[2024-04-02].

    Google Scholar

    [39] 郭衍昊, 窦杰, 向子林, 等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报, 2024, 43(3): 251 − 265. [GUO Yanhao, DOU Jie, XIANG Zilin, et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251 − 265. (in Chinese with English abstract)]

    Google Scholar

    GUO Yanhao, DOU Jie, XIANG Zilin, et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251 − 265. (in Chinese with English abstract)

    Google Scholar

    [40] 徐锡伟, 陈桂华, 于贵华, 等. 芦山地震发震构造及其与汶川地震关系讨论[J]. 地学前缘, 2013, 20(3): 11 − 20. [XU Xiwei, CHEN Guihua, YU Guihua, et al. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J]. Earth Science Frontiers, 2013, 20(3): 11 − 20. (in Chinese with English abstract)]

    Google Scholar

    XU Xiwei, CHEN Guihua, YU Guihua, et al. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J]. Earth Science Frontiers, 2013, 20(3): 11 − 20. (in Chinese with English abstract)

    Google Scholar

    [41] 沈军, 薄景山, 于晓辉, 等. 2013年4月20日芦山7.0级地震发震构造及地震地质灾害特点[J]. 防灾科技学院学报, 2013, 15(3): 1 − 8. [SHEN Jun, BO Jingshan, YU Xiaohui, et al. Seismotectonics and seismogeological disaster of the April 20, 2013 Ms7.0 (Mw6.6) Lushan earthquake in Sichuan Province of China[J]. Journal of Institute of Disaster Prevention, 2013, 15(3): 1 − 8. (in Chinese with English abstract)]

    Google Scholar

    SHEN Jun, BO Jingshan, YU Xiaohui, et al. Seismotectonics and seismogeological disaster of the April 20, 2013 Ms7.0 (Mw6.6) Lushan earthquake in Sichuan Province of China[J]. Journal of Institute of Disaster Prevention, 2013, 15(3): 1 − 8. (in Chinese with English abstract)

    Google Scholar

    [42] XU Chong, XU Xiwei, SHYU J B H. Database and spatial distribution of landslides triggered by the Lushan, China Mw6.6 earthquake of 20 April 2013[J]. Geomorphology, 2015, 248: 77 − 92. doi: 10.1016/j.geomorph.2015.07.002

    CrossRef Google Scholar

    [43] 葛伟鹏. 岷县漳县6.6级地震发震构造与区域地形地貌特征关系讨论[J]. 地震工程学报, 2013, 35(4): 840 − 847. [GE Weipeng. Discussion on the relationship between regional landform and seismogenic structure of the Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(4): 840 − 847. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0844.2013.04.840

    CrossRef Google Scholar

    GE Weipeng. Discussion on the relationship between regional landform and seismogenic structure of the Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(4): 840 − 847. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2013.04.840

    CrossRef Google Scholar

    [44] 田颖颖, 许冲, 徐锡伟, 等. 2013年岷县漳县Ms6.6地震滑坡特征参数分析[J]. 地震工程学报, 2013, 35(4): 761 − 767. [TIAN Yingying, XU Chong, XU Xiwei, et al. Analysis of parameters of landslides triggered by the Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(4): 761 − 767. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0844.2013.04.761

    CrossRef Google Scholar

    TIAN Yingying, XU Chong, XU Xiwei, et al. Analysis of parameters of landslides triggered by the Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(4): 761 − 767. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2013.04.761

    CrossRef Google Scholar

    [45] XU Chong, XU Xiwei, SHYU J B H, et al. Landslides triggered by the 22 July 2013 Minxian–Zhangxian, China, Mw5.9 earthquake: Inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 2014, 92: 125 − 142. doi: 10.1016/j.jseaes.2014.06.014

    CrossRef Google Scholar

    [46] 许冲. 利用同震滑坡分析2014年鲁甸地震震源性质与破裂过程[J]. 工程地质学报, 2015, 23(4): 755 − 759. [XU Chong. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian earthquake[J]. Journal of Engineering Geology, 2015, 23(4): 755 − 759. (in Chinese with English abstract)]

    Google Scholar

    XU Chong. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian earthquake[J]. Journal of Engineering Geology, 2015, 23(4): 755 − 759. (in Chinese with English abstract)

    Google Scholar

    [47] 许冲, 徐锡伟, 沈玲玲, 等. 2014年鲁甸Ms6.5地震触发滑坡编录及其对一些地震参数的指示[J]. 地震地质, 2014, 36(4): 1186 − 1203. [XU Chong, XU Xiwei, SHEN Lingling, et al. Inventory of landslides triggered by the 2014 Ms6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 2014, 36(4): 1186 − 1203. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4967.2014.04.020

    CrossRef Google Scholar

    XU Chong, XU Xiwei, SHEN Lingling, et al. Inventory of landslides triggered by the 2014 Ms6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 2014, 36(4): 1186 − 1203. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2014.04.020

    CrossRef Google Scholar

    [48] 徐锡伟, 陈桂华, 王启欣, 等. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 2017, 60(10): 4018 − 4026. [XU Xiwei, CHEN Guihua, WANG Qixin, et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2017, 60(10): 4018 − 4026. (in Chinese with English abstract)] doi: 10.6038/cjg20171028

    CrossRef Google Scholar

    XU Xiwei, CHEN Guihua, WANG Qixin, et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2017, 60(10): 4018 − 4026. (in Chinese with English abstract) doi: 10.6038/cjg20171028

    CrossRef Google Scholar

    [49] 许冲, 王世元, 徐锡伟, 等. 2017年8月8日四川省九寨沟Ms7.0地震触发滑坡全景[J]. 地震地质, 2018, 40(1): 232 − 260. [XU Chong, WANG Shiyuan, XU Xiwei, et al. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou, Sichuan Ms7.0 earthquake[J]. Seismology and Geology, 2018, 40(1): 232 − 260. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4967.2018.01.017

    CrossRef Google Scholar

    XU Chong, WANG Shiyuan, XU Xiwei, et al. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou, Sichuan Ms7.0 earthquake[J]. Seismology and Geology, 2018, 40(1): 232 − 260. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2018.01.017

    CrossRef Google Scholar

    [50] 张翼, 宴金旭, 赵雪慧, 等. 四川泸定Ms 6.8地震灾害主要特征分析[J]. 中国地震, 2023, 39(1): 1 − 20. [ZHANG Yi, YAN Jinxu, ZHAO Xuehui, et al. A study on the main characteristics of disaster by the Luding Ms6.8 earthquake[J]. Earthquake Research in China, 2023, 39(1): 1 − 20. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-4683.2023.01.001

    CrossRef Google Scholar

    ZHANG Yi, YAN Jinxu, ZHAO Xuehui, et al. A study on the main characteristics of disaster by the Luding Ms6.8 earthquake[J]. Earthquake Research in China, 2023, 39(1): 1 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4683.2023.01.001

    CrossRef Google Scholar

    [51] HUANG Yuandong, XIE Chenchen, LI Tao, et al. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on September 5, 2022[J]. Earthquake Research Advances, 2023, 3(1): 100181. doi: 10.1016/j.eqrea.2022.100181

    CrossRef Google Scholar

    [52] 许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010, 18(1): 15 − 26. [XU Chong, DAI Fuchu, YAO Xin, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010, 18(1): 15 − 26. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2010.01.003

    CrossRef Google Scholar

    XU Chong, DAI Fuchu, YAO Xin, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010, 18(1): 15 − 26. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.01.003

    CrossRef Google Scholar

    [53] 许冲, 戴福初, 姚鑫, 等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2972 − 2981. [XU Chong, DAI Fuchu, YAO Xin, et al. GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup 1): 2972 − 2981. (in Chinese with English abstract)]

    Google Scholar

    XU Chong, DAI Fuchu, YAO Xin, et al. GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup 1): 2972 − 2981. (in Chinese with English abstract)

    Google Scholar

    [54] 康晓波, 杨迎冬, 王宇, 等. 云南省地质灾害综合防治体系建设系列专项研究进展[J]. 中国地质灾害与防治学报, 2023, 34(6): 146 − 157. [KANG Xiaobo, YANG Yingdong, WANG Yu, et al. Progress of the special-subjects study on the construction of comprehensive geological disaster prevention and control system in Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 146 − 157. (in Chinese with English abstract)]

    Google Scholar

    KANG Xiaobo, YANG Yingdong, WANG Yu, et al. Progress of the special-subjects study on the construction of comprehensive geological disaster prevention and control system in Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 146 − 157. (in Chinese with English abstract)

    Google Scholar

    [55] 沈凌铠, 周保, 魏刚, 等. 气温变化对多年冻土斜坡稳定性的影响——以青海省浅层冻土滑坡为例[J]. 中国地质灾害与防治学报, 2023, 34(1): 8 − 16. [SHEN Lingkai, ZHOU Bao, WEI Gang, et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 8 − 16. (in Chinese with English abstract)]

    Google Scholar

    SHEN Lingkai, ZHOU Bao, WEI Gang, et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 8 − 16. (in Chinese with English abstract)

    Google Scholar

    [56] 李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 2017, 31(5): 911 − 929. [LI Langping, LAN Hengxing, GUO Changbao, et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 2017, 31(5): 911 − 929. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-8527.2017.05.004

    CrossRef Google Scholar

    LI Langping, LAN Hengxing, GUO Changbao, et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 2017, 31(5): 911 − 929. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.004

    CrossRef Google Scholar

    [57] HECKERMAN D. Probabilistic interpretations for mycin’s certainty factors[M]//Machine Intelligence and Pattern Recognition. Amsterdam: Elsevier, 1986: 167 − 196.

    Google Scholar

    [58] 陈晓利, 冉洪流, 祁生文. 1976年龙陵地震诱发滑坡的影响因子敏感性分析[J]. 北京大学学报(自然科学版), 2009, 45(1): 104 − 110. [CHEN Xiaoli, RAN Hongliu, QI Shengwen. Triggering factors susceptibility of earthquake-induced landslides in 1976 Longling earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 104 − 110. (in Chinese with English abstract)] doi: 10.3321/j.issn:0479-8023.2009.01.016

    CrossRef Google Scholar

    CHEN Xiaoli, RAN Hongliu, QI Shengwen. Triggering factors susceptibility of earthquake-induced landslides in 1976 Longling earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 104 − 110. (in Chinese with English abstract) doi: 10.3321/j.issn:0479-8023.2009.01.016

    CrossRef Google Scholar

    [59] LI Langping, LAN Hengxing. Bivariate landslide susceptibility analysis: Clarification, optimization, open software, and preliminary comparison[J]. Remote Sensing, 2023, 15(5): 1418. doi: 10.3390/rs15051418

    CrossRef Google Scholar

    [60] 陈宾, 李颖懿, 张联志, 等. 地质灾害易发性评价因子分级的AIFFC算法优化[J]. 中国地质灾害与防治学报, 2024, 35(1): 72 − 81. [CHEN Bin, LI Yingyi, ZHANG Lianzhi, et al. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 72 − 81. (in Chinese with English abstract)]

    Google Scholar

    CHEN Bin, LI Yingyi, ZHANG Lianzhi, et al. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 72 − 81. (in Chinese with English abstract)

    Google Scholar

    [61] LI Langping, LAN Hengxing, GUO Changbao, et al. A modified frequency ratio method for landslide susceptibility assessment[J]. Landslides, 2017, 14(2): 727 − 741. doi: 10.1007/s10346-016-0771-x

    CrossRef Google Scholar

    [62] CHEN Fulong, FU H L, WANG Yiju, et al. Partition of a set of integers into subsets with prescribed sums[J]. Taiwanese Journal of Mathematics, 2005, 9(4): 629 − 638.

    Google Scholar

    [63] 王立朝, 侯圣山, 董英, 等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报, 2024, 35(3): 108 − 118. [WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)]

    Google Scholar

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)

    Google Scholar

    [64] TIAN Yingying, XU Chong, MA Siyuan, et al. Inventory and spatial distribution of landslides triggered by the 8th August 2017 Mw6.5 Jiuzhaigou earthquake, China[J]. Journal of Earth Science, 2019, 30(1): 206 − 217. doi: 10.1007/s12583-018-0869-2

    CrossRef Google Scholar

    [65] LI Yao, CUI Peng, YE Chengming, et al. Accurate prediction of earthquake-induced landslides based on deep learning considering landslide source area[J]. Remote Sensing, 2021, 13(17): 3436. doi: 10.3390/rs13173436

    CrossRef Google Scholar

    [66] 陈博, 李振洪, 黄武彪, 等. 2022年四川泸定Mw6.6级地震诱发地质灾害空间分布及影响因素[J]. 地球科学与环境学报, 2022, 44(6): 971 − 985. [CHEN Bo, LI Zhenhong, HUANG Wubiao, et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw6.6 Luding(Sichuan, China)earthquake[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 971 − 985. (in Chinese with English abstract)]

    Google Scholar

    CHEN Bo, LI Zhenhong, HUANG Wubiao, et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw6.6 Luding(Sichuan, China)earthquake[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 971 − 985. (in Chinese with English abstract)

    Google Scholar

    [67] LI W P, WU Y M, GAO X, et al. The distribution pattern of ground movement and co-seismic landslides: A case study of the 5 September 2022 Luding earthquake, China[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(5): e2023JF007534. doi: 10.1029/2023JF007534

    CrossRef Google Scholar

    [68] ZOU Yu, QI Shengwen, GUO Songfeng, et al. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw6.1 Ludian earthquake in China[J]. Engineering Geology, 2022, 296: 106477. doi: 10.1016/j.enggeo.2021.106477

    CrossRef Google Scholar

    [69] 兰恒星, 伍法权, 周成虎, 等. 基于GIS的云南小江流域滑坡因子敏感性分析[J]. 岩石力学与工程学报, 2002, 21(10): 1500 − 1506. [LAN Hengxing, WU Faquan, ZHOU Cheghu, et al. Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1500 − 1506. (in Chinese with English abstract)]

    Google Scholar

    LAN Hengxing, WU Faquan, ZHOU Cheghu, et al. Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1500 − 1506. (in Chinese with English abstract)

    Google Scholar

    [70] ZHAO Weihua, HUANG Runqiu, JU Nengpan, et al. Assessment model for earthquake-triggered landslides based on quantification theory I: Case study of Jushui River basin in Sichuan, China[J]. Natural Hazards, 2014, 70(1): 821 − 838. doi: 10.1007/s11069-013-0846-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views(48) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint