| Citation: | XING Aiguo, CHANG Wenbin. Dynamic fragmentation characteristics of rock avalanches based on multi-source data synergism[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(5): 76-89. doi: 10.16031/j.cnki.issn.1003-8035.202404058 |
Dynamic fragmentation is the process by which a rock mass continuously disintegrates during the high-speed movement of a large-scale rock avalanche, which significantly influencing the dynamic behavior of rock avalanche. Based on the multi-source data integration approach that combines unmanned aerial vehicle (UAV) image recognition, seismic signal analysis, and discrete element method (DEM) numerical simulations, a joint analysis was conducted to characterize the dynamic fragmentation process and the spatial distribution of the 2017 Nayong rock avalanche in Guizhou, China. The DEM results indicate that the formation of a basal shear failure zone in the source area was the key mechanism triggering large-scale toppling and collapse. The simulated maximum sliding velocity (36.5 m/s) aligns closely with the result from seismic inversion (31.6 m/s), which verifies the reliability of the numerical model. Dynamic fragmentation indicators show that the velocity, relative breakage ratio, fracture number growth rate, fractal dimension D, and the shape parameter β all change significantly within the first 20 seconds—reaching 31.6 m/s, 0.85,
| [1] | 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 217 − 226. [YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 217 − 226. (in Chinese with English abstract)] YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 217 − 226. (in Chinese with English abstract) |
| [2] | 李滨, 殷跃平, 高杨, 等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质, 2020, 47(4): 5 − 13. [LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the Karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 5 − 13. (in Chinese with English abstract)] LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the Karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 5 − 13. (in Chinese with English abstract) |
| [3] | 高杨, 贺凯, 李壮, 等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质, 2020, 47(4): 14 − 23. [GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest Karst mountain areas[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 14 − 23. (in Chinese with English abstract)] GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest Karst mountain areas[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 14 − 23. (in Chinese with English abstract) |
| [4] | 臧佳园, 常文斌, 邢爱国, 等. 含构造节理的崩塌体动力破碎特征[J]. 中国地质灾害与防治学报, 2024, 35(3): 1 − 11. [ZANG Jiayuan, CHANG Wenbin, XING Aiguo, et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 1 − 11. (in Chinese with English abstract)] ZANG Jiayuan, CHANG Wenbin, XING Aiguo, et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 1 − 11. (in Chinese with English abstract) |
| [5] | 吴彩燕, 乔建平, 王成华, 等. 贵州省纳雍县鬃岭镇“12•3” 大型崩塌灾害分析[J]. 水土保持研究, 2006, 13(6): 100 − 102. [WU Caiyan, QIAO Jianping, WANG Chenghua, et al. Analysis on “12·3” super large-scaled landslide in zongling, Nayong, Guizhou[J]. Research of Soil and Water Conservation, 2006, 13(6): 100 − 102. (in Chinese with English abstract)] doi: 10.3969/j.issn.1005-3409.2006.06.031 WU Caiyan, QIAO Jianping, WANG Chenghua, et al. Analysis on “12·3” super large-scaled landslide in zongling, Nayong, Guizhou[J]. Research of Soil and Water Conservation, 2006, 13(6): 100 − 102. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-3409.2006.06.031 |
| [6] | 易连兴. 鬃岭高位滑坡带地下水补径排特征及致灾作用研究[J]. 中国岩溶, 2020, 39(4): 559 − 566. [YI Lianxing. Characteristics and the hazard-inducing effect of groundwater systems in Zongling high-level landslide areas[J]. Carsologica Sinica, 2020, 39(4): 559 − 566. (in Chinese with English abstract)] YI Lianxing. Characteristics and the hazard-inducing effect of groundwater systems in Zongling high-level landslide areas[J]. Carsologica Sinica, 2020, 39(4): 559 − 566. (in Chinese with English abstract) |
| [7] | ZHU Yaoqiang, XU Shimin, ZHUANG Yu, et al. Characteristics and runout behaviour of the disastrous 28 August 2017 rock avalanche in Nayong, Guizhou, China[J]. Engineering Geology, 2019, 259: 105154. doi: 10.1016/j.enggeo.2019.105154 |
| [8] | 郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018, 26(1): 223 − 240. [ZHENG Guang, XU Qiang, JU Yuanzhen, et al. The Pusacun rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2018, 26(1): 223 − 240. (in Chinese with English abstract)] ZHENG Guang, XU Qiang, JU Yuanzhen, et al. The Pusacun rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2018, 26(1): 223 − 240. (in Chinese with English abstract) |
| [9] | DE BLASIO F V, CROSTA G B. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters, 2015, 42(20): 8463 − 8470. doi: 10.1002/2015GL064723 |
| [10] | 邢爱国, 高广运, 陈龙珠, 等. 大型高速滑坡启程流体动力学机理研究[J]. 岩石力学与工程学报, 2004, 23(4): 607 − 613. [XING Aiguo, GAO Guangyun, CHEN Longzhu, et al. Study on hydrodynamics mechanism of large highspeed landslide in the set-out stage[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 607 − 613. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2004.04.015 XING Aiguo, GAO Guangyun, CHEN Longzhu, et al. Study on hydrodynamics mechanism of large highspeed landslide in the set-out stage[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 607 − 613. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.04.015 |
| [11] | 王玉峰, 林棋文, 李坤, 等. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 2021, 43(1): 164 − 181. [WANG Yufeng, LIN Qiwen, LI Kun, et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 164 − 181. (in Chinese with English abstract)] WANG Yufeng, LIN Qiwen, LI Kun, et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 164 − 181. (in Chinese with English abstract) |
| [12] | 张磊, 周银朋, 庄宇, 等. 贵州水城尖山营滑坡动力学特性分析与隐患点致灾范围预测[J]. 中国地质灾害与防治学报, 2023, 34(3): 1 − 7. [ZHANG Lei, ZHOU Yinpeng, ZHUANG Yu, et al. Dynamic analysis and prediction of rear slope affected area of the Jianshanying landslide in Shuicheng County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 1 − 7. (in Chinese with English abstract)] ZHANG Lei, ZHOU Yinpeng, ZHUANG Yu, et al. Dynamic analysis and prediction of rear slope affected area of the Jianshanying landslide in Shuicheng County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 1 − 7. (in Chinese with English abstract) |
| [13] | 李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022, 47(3): 893 − 912. [LI Kun, CHENG Qiangong, LIN Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022, 47(3): 893 − 912. (in Chinese with English abstract)] doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203012 LI Kun, CHENG Qiangong, LIN Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022, 47(3): 893 − 912. (in Chinese with English abstract) doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203012 |
| [14] | DUNNING, S. A. The grain-size distribution of rock-avalanche deposits in valley-confined settings[J]. Italian Journal of Engineering Geology and Environment, 2006, 1: 117 − 121. |
| [15] | DUFRESNE A. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 2012, 37(14): 1527 − 1541. doi: 10.1002/esp.3296 |
| [16] | DAVIES T R, MCSAVENEY M J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal, 1999, 36(2): 313 − 320. doi: 10.1139/t98-108 |
| [17] | DAVIES T R, MCSAVENEY M J. The role of rock fragmentation in the motion of large landslides[J]. Engineering Geology, 2009, 109(1/2): 67 − 79. |
| [18] | CROSTA G B, FRATTINI P, FUSI N. Fragmentation in the val pola rock avalanche, Italian Alps[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F1): F01006. |
| [19] | BOWMAN E T, TAKE W A, RAIT K L, et al. Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 2012, 49(4): 460 − 476. doi: 10.1139/t2012-007 |
| [20] | LIN Qiwen, CHENG Qiangong, LI Kun, et al. Contributions of rock mass structure to the emplacement of fragmenting rockfalls and rockslides: Insights from laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB019296. doi: 10.1029/2019JB019296 |
| [21] | 彭双麒, 许强, 李骅锦, 等. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报, 2019, 27(6): 1290 − 1301. [PENG Shuangqi, XU Qiang, LI Huajin, et al. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology, 2019, 27(6): 1290 − 1301. (in Chinese with English abstract)] PENG Shuangqi, XU Qiang, LI Huajin, et al. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology, 2019, 27(6): 1290 − 1301. (in Chinese with English abstract) |
| [22] | 陈达, 许强, 郑光, 等. 基于颗粒识别分析系统的碎屑流堆积物颗粒识别和统计方法研究[J]. 水文地质工程地质, 2021, 48(1): 60 − 69. [CHEN Da, XU Qiang, ZHENG Guang, et al. Particle identification and statistical methods of a rock avalanche accumulation body based on the particle analysis system[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 60 − 69. (in Chinese with English abstract)] CHEN Da, XU Qiang, ZHENG Guang, et al. Particle identification and statistical methods of a rock avalanche accumulation body based on the particle analysis system[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 60 − 69. (in Chinese with English abstract) |
| [23] | 杨峥, 崔圣华, 覃亮, 等. 滑坡颗粒图像识别的投影校正方法与应用研究[J]. 岩石力学与工程学报, 2022, 41(2): 362 − 376. [YANG Zheng, CUI Shenghua, QIN Liang, et al. A projection calibration method of landslide particles image recognition and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2): 362 − 376. (in Chinese with English abstract)] YANG Zheng, CUI Shenghua, QIN Liang, et al. A projection calibration method of landslide particles image recognition and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2): 362 − 376. (in Chinese with English abstract) |
| [24] | ZHAO Tao, CROSTA G B, UTILI S, et al. Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(3): 678 − 695. doi: 10.1002/2016JF004060 |
| [25] | ZHAO Tao, CROSTA G B, DATTOLA G, et al. Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: Insights from discrete element analyses[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 3250 − 3269. doi: 10.1002/2017JB015210 |
| [26] | 王朋伟, 安玉科. 基于倾斜摄影与InSAR技术的高位崩塌风险识别[J]. 水文地质工程地质, 2023, 50(5): 169 − 180. [WANG Pengwei, AN Yuke. High-level collapse risk identification based on oblique photography and InSAR technology[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 169 − 180. (in Chinese with English abstract)] WANG Pengwei, AN Yuke. High-level collapse risk identification based on oblique photography and InSAR technology[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 169 − 180. (in Chinese with English abstract) |
| [27] | CHANG Wenbin, XING Aiguo, JIN Kaiping. Spatial distribution characteristics of rock avalanche fragments from numerical analysis and UAV image recognition[J]. Rock Mechanics and Rock Engineering, 2025, 58(7): 7703 − 7723. |
| [28] | ZHAO Tao, CROSTA G B. On the dynamic fragmentation and lubrication of coseismic landslides[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9914 − 9932. doi: 10.1029/2018JB016378 |
| [29] | XING Aiguo, XU Qiang, ZHU Yaoqiang, et al. The August 27, 2014, rock avalanche and related impulse water waves in Fuquan, Guizhou, China[J]. Landslides, 2016, 13(2): 411 − 422. doi: 10.1007/s10346-016-0679-5 |
| [30] | XING Aiguo, WANG Gonghui, YIN Yueping, et al. Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China[J]. Landslides, 2016, 13(5): 1035 − 1047. doi: 10.1007/s10346-015-0617-y |
| [31] | LUO Hao, XING Aiguo, JIN Kaiping, et al. Discrete element modeling of the Nayong rock avalanche, Guizhou, China constrained by dynamic parameters from seismic signal inversion[J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 1629 − 1645. doi: 10.1007/s00603-021-02363-9 |
| [32] | ZHANG Yanbo, XING Aiguo, JIN Kaiping, et al. Investigation and dynamic analyses of rockslide-induced debris avalanche in Shuicheng, Guizhou, China[J]. Landslides, 2020, 17(9): 2189 − 2203. doi: 10.1007/s10346-020-01436-0 |
| [33] | ZHUANG Yu, XING Aiguo, LENG Yangyang, et al. Investigation of characteristics of long runout landslides based on the multi-source data collaboration: A case study of the Shuicheng basalt landslide in Guizhou, China[J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 3783 − 3798. doi: 10.1007/s00603-021-02493-0 |
| [34] | CHANG Wenbin, XU Qiang, DONG Xiujun, et al. Dynamic process analysis of the Xinmo landslide via seismic signal and numerical simulation[J]. Landslides, 2022, 19(6): 1463 − 1478. doi: 10.1007/s10346-022-01876-w |
| [35] | JIN Kaiping, XING Aiguo, CHANG Wenbin, et al. Inferring dynamic fragmentation through the particle size and shape distribution of a rock avalanche[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(11): e2022JF006784. doi: 10.1029/2022JF006784 |
Nayong rock avalanche -debris flow
Stereographic projection analysis of unstable rock block
Longitudinal profile and zoning of the Nayong rock avalanche
Stratigraphic distribution map of the Zhangjiawan collapse area, Nayong
UAV image recognition of the Nayong avalanche accumulation area
Seismic signal map at Zhangjiawan station
Numerical simulation modeling process of the nayong rock avalanche using discrete element method
UAV images and DEM simulation results of the initial failure stage of the Nayong rock avalanche
DEM simulation results of the dynamic fragmentation process of the Nayong rock avalanche
Final simulation results of the Nayong rock avalanche debris accumulation area
Vertical profiles of the Nayong rock avalanche debris flow accumulation area
Joint analysis of dynamic fragmentation indicators of rock avalanche
Statistical results of rock fragment sizes from UAV image recognition and DEM modeling