China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2024 Vol. 35, No. 1
Article Contents

YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1-18. doi: 10.16031/j.cnki.issn.1003-8035.202310006
Citation: YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1-18. doi: 10.16031/j.cnki.issn.1003-8035.202310006

Research on high-altitude and long-runout rockslides: Review and prospects

  • Long-runout rockslides at high altitude have caused lots of severe casualties and huge economic losses in the world, becoming a focus issue in researches on mitigation for large-scale geological disasters. This paper systematically reviews the research process of high-altitude and long-runout rockslides and believes that conventional research on “high velocity and long runout” is difficult to adapt to the requirements of complex geohazards prevention and mitigation in high and extra-high mountains. The methodology on high-altitude and long-runout rockslides has been proposed that includes in the initiation at the high-position, the dynamics of chain-style disasters with a long-runout traveling and the risk assessment and mitigation. Then, the disaster-prone geostructure characteristics and early identification techniques of the high-altitude initiation zone, the long-runout transferring mechanism and boundary layer effect of high-velocity debris avalanche, and risk assessment and mitigation issues have been explored. Through the study in the high mountain and extra-high mountains of the Qinghai-Tibet Plateau indicates that the potential flow transferring mechanism of debris avalanche in high-altitude rockslides, the boundary layer effect of turbulent fluid and the plowing bodies. It is proposed that energy dissipation and risk mitigation methods can be used by modifying the boundary layer bottom slope of high potential debris avalanche, to increase the generation of turbulent kinetic energy in the boundary layer, and the dead zone range in front of barrier piles. Three research directions have been discussed, including the initiating mechanism of disaster-prone geostructure, the dynamic process of high-altitude and long-runout disaster chains, and the theory and technology of risk prevention and mitigation.

  • 加载中
  • [1] YIN Yueping,LI Bin,GAO Yang,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66 − 101. doi: 10.1016/j.jrmge.2022.11.001

    CrossRef Google Scholar

    [2] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Study on characteristics and disaster reduction of high-speed giant landslide in Bhumi Yigong,Xizang Province[J]. Hydrogeology & Engineering Geology2000,27(4):8 − 11. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping. Study on characteristics and disaster reduction of high-speed giant landslide in Bhumi Yigong, Xizang Province[J]. Hydrogeology & Engineering Geology2000, 27(4): 8 − 11. (in Chinese with English abstract)

    Google Scholar

    [3] 殷跃平,朱赛楠,李滨,等. 青藏高原高位远程地质灾害[M]. 北京:科学出版社,2021. [YIN Yueping,ZHU Sainan,LI Bin,et al. High-level remote geological disasters in Qinghai-Tibet Plateau[M]. Beijing:Science Press,2021. (in Chinese)]

    Google Scholar

    YIN Yueping, ZHU Sainan, LI Bin, et al. High-level remote geological disasters in Qinghai-Tibet Plateau[M]. Beijing: Science Press, 2021. (in Chinese)

    Google Scholar

    [4] 崔鹏,贾洋,苏凤环,等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊,2017,32(9):985 − 992. [CUI Peng,JIA Yang,SU Fenghuan,et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences,2017,32(9):985 − 992. (in Chinese with English abstract)]

    Google Scholar

    CUI Peng, JIA Yang, SU Fenghuan, et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 2017, 329): 985992. (in Chinese with English abstract)

    Google Scholar

    [5] 彭建兵,崔鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing,CUI Peng,ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)]

    Google Scholar

    PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 3912): 23772389. (in Chinese with English abstract)

    Google Scholar

    [6] ORENSE R,SAPUAY S. Preliminary report on the 17 February 2006 Leyte,Philippines landslide[J]. Soils and Foundations,2006,46(5):685 − 693. doi: 10.3208/sandf.46.685

    CrossRef Google Scholar

    [7] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige village on October 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)]

    Google Scholar

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 266): 15341551. (in Chinese with English abstract)

    Google Scholar

    [8] 邓建辉,高云建,余志球,等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,2019,51(1):9 − 16. [DENG Jianhui,GAO Yunjian,YU Zhiqiu,et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River,China[J]. Advanced Engineering Sciences,2019,51(1):9 − 16. (in Chinese with English abstract)]

    Google Scholar

    DENG Jianhui, GAO Yunjian, YU Zhiqiu, et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences, 2019, 511): 916. (in Chinese with English abstract)

    Google Scholar

    [9] WANG Wenpei,YIN Yueping,ZHU Sainan,et al. Investigation and numerical modeling of the overloading-induced catastrophic rockslide avalanche in Baige,Tibet,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(4):1765 − 1779. doi: 10.1007/s10064-019-01664-2

    CrossRef Google Scholar

    [10] ZHANG Shilin,YIN Yueping,HU Xiewen,et al. Dynamics and emplacement mechanisms of the successive Baige landslides on the Upper Reaches of the Jinsha River,China[J]. Engineering Geology,2020,278:105819. doi: 10.1016/j.enggeo.2020.105819

    CrossRef Google Scholar

    [11] ZHANG Shilin,YIN Yueping,HU Xiewen,et al. Initiation mechanism of the Baige landslide on the upper reaches of the Jinsha River,China[J]. Landslides,2020,17(12):2865 − 2877. doi: 10.1007/s10346-020-01495-3

    CrossRef Google Scholar

    [12] SHUGAR D H,JACQUEMART M,SHEAN D,et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli,Indian Himalaya[J]. Science,2021,373(6552):300 − 306. doi: 10.1126/science.abh4455

    CrossRef Google Scholar

    [13] 殷跃平,李滨,张田田,等. 印度查莫利“2•7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1 − 8. [YIN Yueping,LI Bin,ZHANG Tiantian,et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1 − 8. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, LI Bin, ZHANG Tiantian, et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 323): 18. (in Chinese with English abstract)

    Google Scholar

    [14] ZHANG Tiantian,YIN Yueping,LI Bin,et al. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli,Indian Himalaya[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(2):296 − 308. doi: 10.1016/j.jrmge.2022.04.003

    CrossRef Google Scholar

    [15] FAN Xuanmei,YUNUS A P,YANG Yinghui,et al. Imminent threat of rock-ice avalanches in High Mountain Asia[J]. Science of the Total Environment,2022,836:155380. doi: 10.1016/j.scitotenv.2022.155380

    CrossRef Google Scholar

    [16] PINYOL N,ALONSO E. Criteria for rapid sliding II:Thermo-hydro-mechanical and scale effects in Vaiont case[J]. Engineering Geology,2010,114:211 − 227. doi: 10.1016/j.enggeo.2010.04.017

    CrossRef Google Scholar

    [17] SASSA K,NAGAI O,SOLIDUM R,et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides,2010,7(3):219 − 236. doi: 10.1007/s10346-010-0230-z

    CrossRef Google Scholar

    [18] HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. doi: 10.1007/s10346-013-0436-y

    CrossRef Google Scholar

    [19] CROSTA G B,AGLIARDI F,RIVOLTA C,et al. Long-term evolution and early warning strategies for complex rockslides by real-time monitoring[J]. Landslides,2017,14(5):1615 − 1632. doi: 10.1007/s10346-017-0817-8

    CrossRef Google Scholar

    [20] 殷跃平,王文沛,张楠,等. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping,WANG Wenpei,ZHANG Nan,et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:A case study of the Xinmo landslide in Maoxian County,Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 445): 827841. (in Chinese with English abstract)

    Google Scholar

    [21] XU Wenjie,ZHOU Qian,DONG Xueyang. SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part II:Reproduction of the Vajont landslide tsunami[J]. Acta Geotechnica,2022,17(6):2121 − 2137. doi: 10.1007/s11440-021-01387-3

    CrossRef Google Scholar

    [22] GAO Yang,YIN Yueping,LI Bin,et al. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides,2022,19(7):1791 − 1805. doi: 10.1007/s10346-022-01858-y

    CrossRef Google Scholar

    [23] BUSS E,HEIM Α. Der bergsturz von elm [J]. Zurich,Wurster & Cie,1881:163.

    Google Scholar

    [24] HEIM A. Bergsturz und Menschenleben (Landslides and human lives)[J]. Fretz und Wasmuth,Zurich,1932:218.

    Google Scholar

    [25] MCCONNELL R G,BROCK R W. Report on the great landslide at Frank,Alberta[R]. Ottawa:Department of the Interior,Government of Canada,1904.

    Google Scholar

    [26] CRUDEN D. Major rock slides in the Canadian Rockies[C]//Proceedings of the 27th Canadian Geotechnical Conference. Edmonton,Alta:[s.n.],1974:59 − 66.

    Google Scholar

    [27] CRUDEN D M,VARNES D J. Landslide types and processes[M]//Turner A K,Schuster R L. Landslides. Washington D C:National Academy Press,1996:36 − 75.

    Google Scholar

    [28] CHARRIÈRE M,HUMAIR F,FROESE C,et al. From the source area to the deposit:collapse,fragmentation,and propagation of the Frank Slide[J]. Geological Society of America Bulletin,2015:B31243.1.

    Google Scholar

    [29] CRUDEN D M,HUNGR O. The debris of the Frank Slide and theories of rockslide–avalanche mobility[J]. Canadian Journal of Earth Sciences,1986,23(3):425 − 432. doi: 10.1139/e86-044

    CrossRef Google Scholar

    [30] MELOSH H J. The mechanics of large rock avalanches[C]//Debris Flows/Avalanches:Process,Recognition,and Mitigation. Boulder:Geological Society of America,1987:41 − 50.

    Google Scholar

    [31] BENKO B,STEAD D. The Frank slide:a reexamination of the failure mechanism[J]. Canadian Geotechnical Journal,1998,35(2):299 − 311. doi: 10.1139/t98-005

    CrossRef Google Scholar

    [32] LOCAT P,COUTURE R,LEROUEIL S,et al. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal,2006,43(8):830 − 851. doi: 10.1139/t06-045

    CrossRef Google Scholar

    [33] MÜLLER L. The rock slide in the Vajont Valley[J]. Rock Mechanics & Engineering Geology,1964,2:148 − 212.

    Google Scholar

    [34] MÜLLER-SALZBURG L. The Vajont catastrophe:A personal review[J]. Engineering Geology,1987,24(1/2/3/4):423 − 444.

    Google Scholar

    [35] MÜLLER L. The Vajont slide[J]. Engineering Geology,1987,24(1/2/3/4):527 − 532.

    Google Scholar

    [36] BROILI L. New knowledge on the geomorphology of the Vaiont slide slip surface[J]. Rock Mechanics & Rock Engineering,1967,5:38 − 88.

    Google Scholar

    [37] KILBURN C R J,PETLEY D N. Forecasting giant,catastrophic slope collapse:Lessons from Vajont,Northern Italy[J]. Geomorphology,2003,54(1/2):21 − 32.

    Google Scholar

    [38] BISTACCHI A,MASSIRONI M,SUPERCHI L,et al. A 3D geological model of the 1963 Vajont landslide[J]. Italian Journal of Engineering Geology & Environment,2013(TOPIC 6):531-539.

    Google Scholar

    [39] BOON C W,HOULSBY G T,UTILI S. New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses[J]. Géotechnique,2014,64(10):800 − 816.

    Google Scholar

    [40] HUTCHINSON J N,KOJEAN E. On the rock slide-debris flow of 25 April 1974 in the Quebrada Ccochacay on the Rio Mantaro[R]. UNESCO Mission to the Mantaro Valley,Peru,1975:49.

    Google Scholar

    [41] KOJAN E,HUTCHINSON J N. Mayunmarca rockslide and debris flow,Peru[M]//Developments in Geotechnical Engineering. Amsterdam:Elsevier,1978:315-353.

    Google Scholar

    [42] EVANS S G,GUTHRIE R H,ROBERTS N J,et al. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island,Philippines:a catastrophic landslide in tropical mountain terrain[J]. Natural Hazards and Earth System Sciences,2007,7(1):89 − 101. doi: 10.5194/nhess-7-89-2007

    CrossRef Google Scholar

    [43] GUTHRIE R H,EVANS S G,CATANE S G,et al. The 17 February 2006 rock slide-debris avalanche at Guinsaugon Philippines:a synthesis[J]. Bulletin of Engineering Geology and the Environment,2009,68(2):201 − 213. doi: 10.1007/s10064-009-0205-2

    CrossRef Google Scholar

    [44] LUZON P K,MONTALBO K,GALANG J,et al. Hazard mapping related to structurally controlled landslides in Southern Leyte,Philippines[J]. Natural Hazards and Earth System Sciences,2016,16(3):875 − 883. doi: 10.5194/nhess-16-875-2016

    CrossRef Google Scholar

    [45] 孙玉科,姚宝魁. 盐池河磷矿山体崩坍破坏机制的研究[J]. 水文地质工程地质,1983,10(1):1 − 7. [SUN Yuke,YAO Baokui. Study on the mechanism of mountain collapse in Yanchihe phosphate mine[J]. Hydrogeology & Engineering Geology,1983,10(1):1 − 7. (in Chinese)]

    Google Scholar

    SUN Yuke, YAO Baokui. Study on the mechanism of mountain collapse in Yanchihe phosphate mine[J]. Hydrogeology & Engineering Geology, 1983, 101): 17. (in Chinese)

    Google Scholar

    [46] 孙玉科. 宜昌盐池河磷矿山崩及其崩坍破坏机制[C]//中国典型滑坡. 宜昌,1986:99-108. [SUN Yuke. Collapse and failure mechanism of Yanchihe phosphate mine,Yichang,China[C]//Typical landslides in China. Yichang,1986:99-108. (in Chinese)]

    Google Scholar

    SUN Yuke. Collapse and failure mechanism of Yanchihe phosphate mine, Yichang, China[C]//Typical landslides in China. Yichang, 1986: 99-108. (in Chinese)

    Google Scholar

    [47] 艾南山,王民新. 洒勒山滑坡速度的估算[J]. 水土保持通报,1983,3(3):72 − 74. [AI Nanshan,WANG Minxin. An estimate of velocity of the landslide at sale mountain[J]. Bulletin of Soil and Water Conservation,1983,3(3):72 − 74. (in Chinese with English abstract)]

    Google Scholar

    AI Nanshan, WANG Minxin. An estimate of velocity of the landslide at sale mountain[J]. Bulletin of Soil and Water Conservation, 1983, 33): 7274. (in Chinese with English abstract)

    Google Scholar

    [48] 冯学才,田植甲. 洒勒山滑坡的特征及其预报[J]. 水土保持通报,1983,3(3):75 − 81. [FENG Xuecai,TIAN Zhijia. Characteristics and prediction of Saleshan landslide[J]. Bulletin of Soil and Water Conservation,1983,3(3):75 − 81. (in Chinese)]

    Google Scholar

    FENG Xuecai, TIAN Zhijia. Characteristics and prediction of Saleshan landslide[J]. Bulletin of Soil and Water Conservation, 1983, 33): 7581. (in Chinese)

    Google Scholar

    [49] 苏伯苓. 高速超大型洒勒山滑坡及其研究[C]//中国典型滑坡. 宜昌,1986:43 − 48. [SUBoling. Study on high speed super-large scale Saleshan landslide[C]//Typical landslides in China. Yichang,1986:43 − 48. (in Chinese)]

    Google Scholar

    SUBoling. Study on high speed super-large scale Saleshan landslide[C]//Typical landslides in China. Yichang, 1986: 43 − 48. (in Chinese)

    Google Scholar

    [50] 王士天,詹铮,刘汉超. 洒勒山高速滑坡的基本特征及动力学机制[J]. 地质灾害与环境保护,1990,1(2):66 − 74. [WANG Shitian,ZHAN Zheng,LIU Hanchao. Basic characteristics and dynamic mechanism of Saleshan high-speed landslide[J]. Journal of Geological Hazards and Environment Preservation,1990,1(2):66 − 74. (in Chinese)]

    Google Scholar

    WANG Shitian, ZHAN Zheng, LIU Hanchao. Basic characteristics and dynamic mechanism of Saleshan high-speed landslide[J]. Journal of Geological Hazards and Environment Preservation, 1990, 12): 6674. (in Chinese)

    Google Scholar

    [51] 杨志双,洪勇. 中国洒勒山大型滑坡高速运动成因机制和灾害预测[C]//第五届全国工程地质大会文集. 辉县,1996:126 − 131. [YANG Zhishuang,HONG Yong. Genetic mechanism and disaster prediction of high speed large-scale landslide in Salleshan Mountain,China[C]//Proceedings of the 5th National Engineering Geology Congress. Hui County,1996:126 − 131. (in Chinese)]

    Google Scholar

    YANG Zhishuang, HONG Yong. Genetic mechanism and disaster prediction of high speed large-scale landslide in Salleshan Mountain, China[C]//Proceedings of the 5th National Engineering Geology Congress. Hui County, 1996: 126 − 131. (in Chinese)

    Google Scholar

    [52] 李绍武. 新滩滑坡滑动机制的探讨[J]. 水土保持通报,1985,5(5):15 − 19. [LI Shaowu. Discussion on sliding mechanism of Xintan landslide[J]. Bulletin of Soil and Water Conservation,1985,5(5):15 − 19. (in Chinese)]

    Google Scholar

    LI Shaowu. Discussion on sliding mechanism of Xintan landslide[J]. Bulletin of Soil and Water Conservation, 1985, 55): 1519. (in Chinese)

    Google Scholar

    [53] 陆业海. 新滩滑坡征兆及其成功的监测预报[J]. 水土保持通报,1985,5(5):1 − 9. [LU Yehai. Symptoms of Xintan landslide and its successful monitoring and prediction[J]. Bulletin of Soil and Water Conservation,1985,5(5):1 − 9. (in Chinese)]

    Google Scholar

    LU Yehai. Symptoms of Xintan landslide and its successful monitoring and prediction[J]. Bulletin of Soil and Water Conservation, 1985, 55): 19. (in Chinese)

    Google Scholar

    [54] 刘雄. 新滩大滑坡机制探讨[J]. 岩土力学,1986,7(2):53 − 60. [LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics,1986,7(2):53 − 60. (in Chinese with English abstract)]

    Google Scholar

    LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics, 1986, 72): 5360. (in Chinese with English abstract)

    Google Scholar

    [55] 吕贵芳,任江. 新滩滑坡研究[C]//中国典型滑坡. 宜昌,1986:210 − 220. [LYUGuifang,REN Jiang. Research on Xintan landslide[C]//Typical landslideS in China. Yichang,1986:210 − 220. (in Chinese)]

    Google Scholar

    LYUGuifang, REN Jiang. Research on Xintan landslide[C]//Typical landslideS in China. Yichang, 1986: 210 − 220. (in Chinese)

    Google Scholar

    [56] 黄润秋. 灾害性崩滑地质过程的全过程模拟[J]. 中国地质灾害与防治学报,1994,5(增刊1):11 − 17. [HUANG Runqiu. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control,1994,5(Sup 1):11 − 17. (in Chinese with English abstract)]

    Google Scholar

    HUANG Runqiu. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(Sup 1): 11 − 17. (in Chinese with English abstract)

    Google Scholar

    [57] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)]

    Google Scholar

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 263): 433454. (in Chinese with English abstract)

    Google Scholar

    [58] 胡广韬. 论斜坡环境中滑坡之剧动与高速的机理[J]. 陕西水力发电,1986,2(3):7 − 18. [HU Guangtao. On the mechanism of landslide violent movement and high speed in slope environment[J]. Power System and Clean Energy,1986,2(3):7 − 18. (in Chinese)]

    Google Scholar

    HU Guangtao. On the mechanism of landslide violent movement and high speed in slope environment[J]. Power System and Clean Energy, 1986, 23): 718. (in Chinese)

    Google Scholar

    [59] 胡广韬. 灾害性滑坡启程剧动与行程高速的机理[J]. 灾害学,1987,2(1):17 − 28. [HU Guangtao. On the mechanisms of initial intense moving and high speed travelling of disastrous landslides[J]. Journal of Catastrophology,1987,2(1):17 − 28. (in Chinese with English abstract)]

    Google Scholar

    HU Guangtao. On the mechanisms of initial intense moving and high speed travelling of disastrous landslides[J]. Journal of Catastrophology, 1987, 21): 1728. (in Chinese with English abstract)

    Google Scholar

    [60] 胡广韬,毛延龙,赵法锁. 论基岩高速滑坡的弹冲动力学机理[J]. 中国地质灾害与防治学报,1992,3(4):21 − 33. [HU Guangtao,MAO Yanlong,ZHAO Fasuo. The elastic impulsive motion dynamics mechanisim of high-speed landslide on bed rock[J]. The Chinese Journal of Geological Hazard and Control,1992,3(4):21 − 33. (in Chinese with English abstract)]

    Google Scholar

    HU Guangtao, MAO Yanlong, ZHAO Fasuo. The elastic impulsive motion dynamics mechanisim of high-speed landslide on bed rock[J]. The Chinese Journal of Geological Hazard and Control, 1992, 34): 2133. (in Chinese with English abstract)

    Google Scholar

    [61] 王士天,张倬元,詹铮,等. 龙羊峡水电站:重大工程地质问题研究[M]. 成都:成都科技大学出版社,1989. [WANG Shitian,ZHANG Zhuoyuan,ZHAN Zheng,et al. Longyangxia Hydropower Station:Research on major engineering geological problems[M]. Chengdu:Chengdu University of Science and Technology Press,1989. (in Chinese)]

    Google Scholar

    WANG Shitian, ZHANG Zhuoyuan, ZHAN Zheng, et al. Longyangxia Hydropower Station: Research on major engineering geological problems[M]. Chengdu: Chengdu University of Science and Technology Press, 1989. (in Chinese)

    Google Scholar

    [62] 胡广韬. 滑坡动力学[M]. 北京:地质出版社,1995. [HU Guangtao. Landslide dynamics[M]. Beijing:Geological Publishing House,1995. (in Chinese)]

    Google Scholar

    HU Guangtao. Landslide dynamics[M]. Beijing: Geological Publishing House, 1995. (in Chinese)

    Google Scholar

    [63] 程谦恭,彭建兵,胡广韬. 高速岩质滑坡动力学[M]. 成都:西南交通大学出版社,1999. [CHENG Qiangong,PENG Jianbing,HU Guangtao. Dynamics of high-speed rock landslide[M]. Chengdu:Southwest Jiaotong University Press,1999. (in Chinese)]

    Google Scholar

    CHENG Qiangong, PENG Jianbing, HU Guangtao. Dynamics of high-speed rock landslide[M]. Chengdu: Southwest Jiaotong University Press, 1999. (in Chinese)

    Google Scholar

    [64] 王家鼎,张倬元. 典型高速黄土滑坡群的系统工程地质研究[M]. 成都:四川科学技术出版社,1999. [WANG Jiading,ZHANG Zhuoyuan. Systematic engineering geological study on typical high-speed loess landslide group[M]. Chengdu:Sichuan Scientific & Technical Publishers,1999. (in Chinese)]

    Google Scholar

    WANG Jiading, ZHANG Zhuoyuan. Systematic engineering geological study on typical high-speed loess landslide group[M]. Chengdu: Sichuan Scientific & Technical Publishers, 1999. (in Chinese)

    Google Scholar

    [65] 晏同珍,杨顺安,方云. 滑坡学[M]. 武汉:中国地质大学出版社,2000. [YAN Tongzhen,YANG Shun’an,FANG Yun. Landslidologies[M]. Wuhan:China University of Geosciences Press,2000. (in Chinese)]

    Google Scholar

    YAN Tongzhen, YANG Shun’an, FANG Yun. Landslidologies[M]. Wuhan: China University of Geosciences Press, 2000. (in Chinese)

    Google Scholar

    [66] 王恭先,徐峻龄,刘光代,等. 滑坡学与滑坡防治技术[M]. 北京:中国铁道出版社,2004. [WANG Gongxian,XU Junling,LIU Guangdai,et al. Landslide science and landslide prevention technology[M]. Beijing:China Railway Publishing House,2004. (in Chinese)]

    Google Scholar

    WANG Gongxian, XU Junling, LIU Guangdai, et al. Landslide science and landslide prevention technology[M]. Beijing: China Railway Publishing House, 2004. (in Chinese)

    Google Scholar

    [67] 黄润秋,许强. 中国典型灾难性滑坡[M]. 北京:科学出版社,2008. [HUANG Runqiu,XU Qiang. Catastrophic landslides in China[M]. Beijing:Science Press,2008. (in Chinese)]

    Google Scholar

    HUANG Runqiu, XU Qiang. Catastrophic landslides in China[M]. Beijing: Science Press, 2008. (in Chinese)

    Google Scholar

    [68] 许强,裴向军,黄润秋,等. 汶川地震大型滑坡研究[M]. 北京:科学出版社,2009. [XU Qiang,PEI Xiangjun,HUANG Runqiu,et al. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press,2009. (in Chinese)]

    Google Scholar

    XU Qiang, PEI Xiangjun, HUANG Runqiu, et al. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing: Science Press, 2009. (in Chinese)

    Google Scholar

    [69] 崔鹏,何思明,姚令侃. 汶川地震山地灾害形成机理与风险控制[M]. 北京:科学出版社,2011. [CUI Peng,HE Siming,YAO Lingkan. Formation mechanism and risk control of mountain disasters in Wenchuan earthquake[M]. Beijing:Science Press,2011. (in Chinese)]

    Google Scholar

    CUI Peng, HE Siming, YAO Lingkan. Formation mechanism and risk control of mountain disasters in Wenchuan earthquake[M]. Beijing: Science Press, 2011. (in Chinese)

    Google Scholar

    [70] 殷跃平,张永双. 汶川地震工程地质与地质灾害[M]. 北京:科学出版社,2013. [YIN Yueping,ZHANG Yongshuang. Engineering geology and geological disasters of Wenchuan earthquake[M]. Beijing:Science Press,2013. (in Chinese)]

    Google Scholar

    YIN Yueping, ZHANG Yongshuang. Engineering geology and geological disasters of Wenchuan earthquake[M]. Beijing: Science Press, 2013. (in Chinese)

    Google Scholar

    [71] 崔鹏,邹强. 川藏交通廊道山地灾害演化规律与工程风险[M]. 北京:科学出版社,2021. [CUI Peng,ZOU Qiang. Evolution law and engineering risk of mountain disasters in Sichuan-Tibet traffic corridor[M]. Beijing:Science Press,2021. (in Chinese)]

    Google Scholar

    CUI Peng, ZOU Qiang. Evolution law and engineering risk of mountain disasters in Sichuan-Tibet traffic corridor[M]. Beijing: Science Press, 2021. (in Chinese)

    Google Scholar

    [72] 邓建辉,陈菲,赵思远. 白格滑坡致灾调查[M]. 北京:科学出版社,2021. [DENG Jianhui,CHEN Fei,ZHAO Siyuan. Investigation on the disaster caused by Baige landslide[M]. Beijing:Science Press,2021. (in Chinese)]

    Google Scholar

    DENG Jianhui, CHEN Fei, ZHAO Siyuan. Investigation on the disaster caused by Baige landslide[M]. Beijing: Science Press, 2021. (in Chinese)

    Google Scholar

    [73] VARNES D J. Slope movement types and processes[C]//Schuster R L,Krizek R J. Landslides,analysis and control,special report 176:Transportation research board. Washington,D C:National Academy of Sciences,1978:11 − 33.

    Google Scholar

    [74] YIN Yueping,WANG Fawu,SUN Ping. Landslide hazards triggered by the 2008 Wenchuan earthquake,Sichuan,China[J]. Landslides,2009,6(2):139 − 152. doi: 10.1007/s10346-009-0148-5

    CrossRef Google Scholar

    [75] YIN Yueping,XING Aiguo. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche,Tibet,China[J]. Bulletin of Engineering Geology and the Environment,2012,71(1):149 − 160. doi: 10.1007/s10064-011-0348-9

    CrossRef Google Scholar

    [76] WANG Fawu,SUN Ping,HIGHLAND L,et al. Key factors influencing the mechanism of rapid and long runout landslides triggered by the 2008 Wenchuan earthquake,China[J]. Geoenvironmental Disasters,2014,1(1):1 − 16. doi: 10.1186/s40677-014-0001-6

    CrossRef Google Scholar

    [77] INTRIERI E,RASPINI F,FUMAGALLI A,et al. The Maoxian landslide as seen from space:Detecting precursors of failure with Sentinel-1 data[J]. Landslides,2018,15(1):123 − 133. doi: 10.1007/s10346-017-0915-7

    CrossRef Google Scholar

    [78] 葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)]

    Google Scholar

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 447): 949956. (in Chinese with English abstract)

    Google Scholar

    [79] GAO Yang,LI Bin,GAO Haoyuan,et al. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area:A case study of the Shuicheng “7•23”landslide in Guizhou,China[J]. Landslides,2020,17(7):1663 − 1677. doi: 10.1007/s10346-020-01377-8

    CrossRef Google Scholar

    [80] 李振洪,宋闯,余琛,等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版),2019,44(7):967 − 979. [LI Zhenhong,SONG Chuang,YU Chen,et al. Application of satellite radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University,2019,44(7):967 − 979. (in Chinese with English abstract)]

    Google Scholar

    LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 447): 967979. (in Chinese with English abstract)

    Google Scholar

    [81] YIN Yueping,LIU Xiaojie,ZHAO Chaoying,et al. Multi-dimensional and long-term time series monitoring and early warning of landslide hazard with improved cross-platform SAR offset tracking method[J]. Science China Technological Sciences,2022,65(8):1891 − 1912. doi: 10.1007/s11431-021-2008-6

    CrossRef Google Scholar

    [82] MASSIRONI M,ZAMPIERI D,SUPERCHI L,et al. Geological structures of the Vajont landslide[J]. Italian Journal of Engineering Geology & Environment,2013(TOPIC 6):573 − 582.

    Google Scholar

    [83] GLASTONBURY J,FELL R. Report on the analysis of “rapid” natural rock slope failures[R]. Sydney:University of New South Wales,2000.

    Google Scholar

    [84] BADGER T C. Fracturing within anticlines and its kinematic control on slope stability[J]. Environmental and Engineering Geoscience,2002,8(1):19 − 33. doi: 10.2113/gseegeosci.8.1.19

    CrossRef Google Scholar

    [85] BRIDEAU M A,YAN Ming,STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology,2009,103(1):30 − 49. doi: 10.1016/j.geomorph.2008.04.010

    CrossRef Google Scholar

    [86] AMBROSI C,CROSTA G B. Valley shape influence on deformation mechanisms of rock slopes[J]. Geological Society,London,Special Publications,2011,351(1):215 − 233. doi: 10.1144/SP351.12

    CrossRef Google Scholar

    [87] HUMAIR F,PEDRAZZINI A,EPARD J L,et al. Structural characterization of Turtle Mountain anticline (Alberta,Canada) and impact on rock slope failure[J]. Tectonophysics,2013,605:133 − 148. doi: 10.1016/j.tecto.2013.04.029

    CrossRef Google Scholar

    [88] STEAD D,WOLTER A. A critical review of rock slope failure mechanisms:The importance of structural geology[J]. Journal of Structural Geology,2015,74:1 − 23. doi: 10.1016/j.jsg.2015.02.002

    CrossRef Google Scholar

    [89] 彭建兵,马润勇,卢全中,等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457 − 466. [PENG Jianbing,MA Runyong,LU Quanzhong,et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences,2004,19(3):457 − 466. (in Chinese with English abstract)] doi: 10.3321/j.issn:1001-8166.2004.03.018

    CrossRef Google Scholar

    PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences, 2004, 193): 457466. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2004.03.018

    CrossRef Google Scholar

    [90] 许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2010.06.002

    CrossRef Google Scholar

    XU Qiang, LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 186): 818826. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002

    CrossRef Google Scholar

    [91] 胡新丽,唐辉明,朱丽霞. 汶川震中岩浆岩高边坡破坏模式与崩塌机理[J]. 地球科学,2011,36(6):1149 − 1154. [HU Xinli,TANG Huiming,ZHU Lixia. Collapse mode and mechanism of high magmatite rock slope in Wenchuan epicentral area[J]. Earth Science,2011,36(6):1149 − 1154. (in Chinese with English abstract)]

    Google Scholar

    HU Xinli, TANG Huiming, ZHU Lixia. Collapse mode and mechanism of high magmatite rock slope in Wenchuan epicentral area[J]. Earth Science, 2011, 366): 11491154. (in Chinese with English abstract)

    Google Scholar

    [92] 李滨,王国章,冯振,等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报,2015,34(6):1148 − 1161. [LI Bin,WANG Guozhang,FENG Zhen,et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1148 − 1161. (in Chinese with English abstract)]

    Google Scholar

    LI Bin, WANG Guozhang, FENG Zhen, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 346): 11481161. (in Chinese with English abstract)

    Google Scholar

    [93] 唐辉明,鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报,2018,26(1):129 − 136. [TANG Huiming,LU Sha. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology,2018,26(1):129 − 136. (in Chinese with English abstract)]

    Google Scholar

    TANG Huiming, LU Sha. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2018, 261): 129136. (in Chinese with English abstract)

    Google Scholar

    [94] 兰恒星,仉义星,伍宇明. 岩体结构效应与长远程滑坡动力学[J]. 工程地质学报,2019,27(1):108 − 122. [LAN Hengxing,ZHANG Yixing,WU Yuming. Effect of rock mass structure on the dynamics of longrunout landslide[J]. Journal of Engineering Geology,2019,27(1):108 − 122. (in Chinese with English abstract)]

    Google Scholar

    LAN Hengxing, ZHANG Yixing, WU Yuming. Effect of rock mass structure on the dynamics of longrunout landslide[J]. Journal of Engineering Geology, 2019, 271): 108122. (in Chinese with English abstract)

    Google Scholar

    [95] XUE Lei,QIN Siqing,PAN Xiaohua,et al. A possible explanation of the stair-step brittle deformation evolutionary pattern of a rockslide[J]. Geomatics,Natural Hazards and Risk,2017,8(2):1456 − 1476. doi: 10.1080/19475705.2017.1345793

    CrossRef Google Scholar

    [96] CHEN Hongran,QIN Siqing,XUE Lei,et al. A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J]. Engineering Geology,2018,242:34 − 43. doi: 10.1016/j.enggeo.2018.05.012

    CrossRef Google Scholar

    [97] 杨百存,秦四清,薛雷,等. 锁固段损伤过程中的能量转化与分配原理[J]. 东北大学学报(自然科学版),2020,41(7):975 − 981. [YANG Baicun,QIN Siqing,XUE Lei,et al. Energy conversion and allocation principle during the damage process of locked segment[J]. Journal of Northeastern University (Natural Science),2020,41(7):975 − 981. (in Chinese with English abstract)]

    Google Scholar

    YANG Baicun, QIN Siqing, XUE Lei, et al. Energy conversion and allocation principle during the damage process of locked segment[J]. Journal of Northeastern University (Natural Science), 2020, 417): 975981. (in Chinese with English abstract)

    Google Scholar

    [98] 殷跃平,朱继良,杨胜元. 贵州关岭大寨高速远程滑坡-碎屑流研究[J]. 工程地质学报,2010,18(4):445 − 454. [YIN Yueping,ZHU Jiliang,YANG Shengyuan. Investigation of a high speed and long Run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology,2010,18(4):445 − 454. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, ZHU Jiliang, YANG Shengyuan. Investigation of a high speed and long Run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology, 2010, 184): 445454. (in Chinese with English abstract)

    Google Scholar

    [99] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报,2010,29(2):217 − 226. [YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide:A case study of Jiweishan rockslide in Wulong,Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217 − 226. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 292): 217226. (in Chinese with English abstract)

    Google Scholar

    [100] 殷跃平,王猛,李滨,等. 汶川地震大光包滑坡动力响应特征研究[J]. 岩石力学与工程学报,2012,31(10):1969 − 1982. [YIN Yueping,WANG Meng,LI Bin,et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1969 − 1982. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6915.2012.10.003

    CrossRef Google Scholar

    YIN Yueping, WANG Meng, LI Bin, et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 3110): 19691982. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.10.003

    CrossRef Google Scholar

    [101] 黄波林,殷跃平,李滨,等. 库区城镇滑坡涌浪风险评价与减灾研究[J]. 地质学报,2021,95(6):1949 − 1961. [HUANG Bolin,YIN Yueping,LI Bin,et al. Study of risk assessment and mitigation for landslide-induced impulse wave near towns in reservoir areas[J]. Acta Geologica Sinica,2021,95(6):1949 − 1961. (in Chinese with English abstract)]

    Google Scholar

    HUANG Bolin, YIN Yueping, LI Bin, et al. Study of risk assessment and mitigation for landslide-induced impulse wave near towns in reservoir areas[J]. Acta Geologica Sinica, 2021, 956): 19491961. (in Chinese with English abstract)

    Google Scholar

    [102] 黄波林,殷跃平. 水库区滑坡涌浪风险评估技术研究[J]. 岩石力学与工程学报,2018,37(3):621 − 629. [HUANG Bolin,YIN Yueping. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):621 − 629. (in Chinese with English abstract)]

    Google Scholar

    HUANG Bolin, YIN Yueping. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 373): 621629. (in Chinese with English abstract)

    Google Scholar

    [103] 李滨,殷跃平,高杨,等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,47(4):5 − 13. [LI Bin,YIN Yueping,GAO Yang,et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,47(4):5 − 13. (in Chinese with English abstract)]

    Google Scholar

    LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology, 2020, 474): 513. (in Chinese with English abstract)

    Google Scholar

    [104] 朱赛楠,殷跃平,王猛,等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan,YIN Yueping,WANG Meng,et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone:Case study of Sela landslide in Jinsha River,Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract)]

    Google Scholar

    ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: Case study of Sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering, 2021, 434): 688697. (in Chinese with English abstract)

    Google Scholar

    [105] HSÜ K J. Albert heim:Observations on landslides and relevance to modern interpretations[M]//Developments in Geotechnical Engineering. Amsterdam:Elsevier,1978:71 − 93.

    Google Scholar

    [106] DAVIES T R,MCSAVENEY M J,HODGSON K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal,1999,36(6):1096 − 1110. doi: 10.1139/t99-067

    CrossRef Google Scholar

    [107] RUBEY W W,KING HUBBERT M. Role of fluid pressure in mechanics of overthrust faulting[J]. Geological Society of America Bulletin,1959,70(2):167. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2

    CrossRef Google Scholar

    [108] KENT P E. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology,1966,74(1):79 − 83. doi: 10.1086/627142

    CrossRef Google Scholar

    [109] SHREVE R L. The blackhawk landslide[M]//Geological Society of America Special Papers. Boulder:Geological Society of America,1968:1 − 48.

    Google Scholar

    [110] SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(3):65.

    Google Scholar

    [111] HSÜ K J. Catastrophic debris streams (sturzstroms) generated by rockfalls[J]. Boulder:Geological Society of America Bulletin,1975,86(1):129. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

    CrossRef Google Scholar

    [112] HOWARD K A. Avalanche mode of motion:Implications from Lunar examples[J]. Science,1973,180:1052 − 1055. doi: 10.1126/science.180.4090.1052

    CrossRef Google Scholar

    [113] IVERSON R M. Mechanics of debris flows and rock avalanches[M]. Boca Raton:CRC Press,2012b.

    Google Scholar

    [114] HUNGR O. Dynamics of rock avalanches and other types of mass movements[D]. Edmonton:University of Alberta,1981.

    Google Scholar

    [115] HUNGR O. Mobility of rock avalanches[R]. Tsukuba:National Research Institute for Earth Science and Disaster Prevention,1990:11-20.

    Google Scholar

    [116] HUNGR O. A model for the runout analysis of rapid flow slides,debris flows,and avalanches[J]. Canadian Geotechnical Journal,1995,32(4):610 − 623. doi: 10.1139/t95-063

    CrossRef Google Scholar

    [117] HUNGR O,MORGENSTERN N R. Experiments in high velocity open channel flow of granular materials[J]. Geotechnique,1984,34(3):405 − 413. doi: 10.1680/geot.1984.34.3.405

    CrossRef Google Scholar

    [118] HUNGR O,EVANS S G. Rock avalanche runout prediction using a dynamic model[C]//Proceedings of the 7th International Symposium on Landslides. Trondheim,Norway:[s.n.],1996:21.

    Google Scholar

    [119] HUNGR O,EVANS S G. A dynamic model for landslides with changing mass[C]//Proceedings of IAEG on Engineering Geology and the Environment. Athens,Greece:[s.n.],1997:719,724.

    Google Scholar

    [120] HUNGR O,EVANS S G,HAZZARD J. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia[J]. Canadian Geotechnical Journal,1999,36(2):224 − 238. doi: 10.1139/t98-106

    CrossRef Google Scholar

    [121] HUNGR O,EVANS S G,BOVIS M J,et al. A review of the classification of landslides of the flow type[J]. Environmental and Engineering Geoscience,2001,7(3):221 − 238. doi: 10.2113/gseegeosci.7.3.221

    CrossRef Google Scholar

    [122] HUNGR O. Rock avalanche occurrence,process and modelling[C]//Landslides from Massive Rock Slope Failure. Dordrecht:Springer,2006:243-266.

    Google Scholar

    [123] XING Aiguo,WANG Gonghui,YIN Yueping,et al. Investigation and dynamic analysis of a catastrophic rock avalanche on September 23,1991,Zhaotong,China[J]. Landslides,2016,13(5):1035 − 1047. doi: 10.1007/s10346-015-0617-y

    CrossRef Google Scholar

    [124] GAO Yang,YIN Yueping,LI Bin,et al. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun,Dujiangyan,China,following the Wenchuan Ms 8.0 earthquake[J]. Landslides,2017,14(4):1361 − 1374. doi: 10.1007/s10346-016-0793-4

    CrossRef Google Scholar

    [125] YIN Yueping,XING Aiguo,WANG Gonghui,et al. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong,Yunnan,southwestern China[J]. Landslides,2017,14(2):649 − 659. doi: 10.1007/s10346-016-0729-z

    CrossRef Google Scholar

    [126] IVERSON R M. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research:Earth Surface,2012,117(F3):F03006.

    Google Scholar

    [127] IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics,1997,35(3):245 − 296. doi: 10.1029/97RG00426

    CrossRef Google Scholar

    [128] IVERSON R M,OUYANG Chaojun. Entrainment of bed material by earth-surface mass flows:Review and reformulation of depth-integrated theory[J]. Reviews of Geophysics,2015,53(1):27 − 58. doi: 10.1002/2013RG000447

    CrossRef Google Scholar

    [129] IVERSON R M,REID M E,LOGAN M,et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience,2011,4(2):116 − 121. doi: 10.1038/ngeo1040

    CrossRef Google Scholar

    [130] IVERSON R M. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology,2015,244:9 − 20. doi: 10.1016/j.geomorph.2015.02.033

    CrossRef Google Scholar

    [131] SAVAGE S B,IVERSON R M. Surge dynamics coupled to pore-pressure evolution in debris flows[C]//RICKENMANN D,CHEN C. International conference on debris-flow hazards mitigation:Mechanics,prediction,and assessment,proceedings. Rotterdam:Millpress,2003:503-514.

    Google Scholar

    [132] PITMAN E B,LE Long. A two-fluid model for avalanche and debris flows[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2005,363(1832):1573-1601.

    Google Scholar

    [133] TAKAHASHI T. Debris flow:mechanics,prediction and countermeasures[M]. London:Taylor & Francis,2007.

    Google Scholar

    [134] 唐春安,赵文. 岩石破裂全过程分析软件系统RFPA2D[J]. 岩石力学与工程学报,1997,16(5):507 − 508. [TANG Chun’an,ZHAO Wen. Software system RFPA2D for analyzing the whole process of rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering,1997,16(5):507 − 508. (in Chinese)] doi: 10.3321/j.issn:1000-6915.1997.05.018

    CrossRef Google Scholar

    TANG Chun’an, ZHAO Wen. Software system RFPA2D for analyzing the whole process of rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 165): 507508. (in Chinese) doi: 10.3321/j.issn:1000-6915.1997.05.018

    CrossRef Google Scholar

    [135] 李世海,高波,燕琳. 三峡永久船闸高边坡开挖三维离散元数值模拟[J]. 岩土力学,2002,23(3):272 − 277. [LI Shihai,GAO Bo,YAN Lin. 3-D simulation of the excavation of high steep slope of Three-Gorges permanent lock by distinct element method[J]. Rock and Soil Mechanics,2002,23(3):272 − 277. (in Chinese with English abstract)]

    Google Scholar

    LI Shihai, GAO Bo, YAN Lin. 3-D simulation of the excavation of high steep slope of Three-Gorges permanent lock by distinct element method[J]. Rock and Soil Mechanics, 2002, 233): 272277. (in Chinese with English abstract)

    Google Scholar

    [136] 刘春,张晓宇,许强,等. 三维离散元模型的滑坡能量守恒模拟研究[J]. 地下空间与工程学报,2017,13(增刊2):698 − 704. [LIU Chun,ZHANG Xiaoyu,XU Qiang,et al. Research on energy conservation simulation of three dimensional discrete element model[J]. Chinese Journal of Underground Space and Engineering,2017,13(Sup 2):698 − 704. (in Chinese with English abstract)]

    Google Scholar

    LIU Chun, ZHANG Xiaoyu, XU Qiang, et al. Research on energy conservation simulation of three dimensional discrete element model[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(Sup 2): 698 − 704. (in Chinese with English abstract)

    Google Scholar

    [137] 徐文杰,王忠静. 一个共享的软件服务系统——水利云计算平台[J]. 长江科学院院报,2021,38(9):141 − 148. [XU Wenjie,WANG Zhongjing. A shared software service system:Hydraulic cloud computing platform[J]. Journal of Yangtze River Scientific Research Institute,2021,38(9):141 − 148. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20200674

    CrossRef Google Scholar

    XU Wenjie, WANG Zhongjing. A shared software service system: Hydraulic cloud computing platform[J]. Journal of Yangtze River Scientific Research Institute, 2021, 389): 141148. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200674

    CrossRef Google Scholar

    [138] SHREVE R L. Sherman landslide,Alaska[J]. Science,1966,154(3757):1639 − 1643. doi: 10.1126/science.154.3757.1639

    CrossRef Google Scholar

    [139] 邢爱国,殷跃平,齐超,等. 高速远程滑坡气垫效应的风洞模拟试验研究[J]. 上海交通大学学报,2012,46(10):1642 − 1646. [XING Aiguo,YIN Yueping,QI Chao,et al. Study on the wind tunnel testing of air cushion effect of high-speed and long-runout landslide[J]. Journal of Shanghai Jiao Tong University,2012,46(10):1642 − 1646. (in Chinese with English abstract)]

    Google Scholar

    XING Aiguo, YIN Yueping, QI Chao, et al. Study on the wind tunnel testing of air cushion effect of high-speed and long-runout landslide[J]. Journal of Shanghai Jiao Tong University, 2012, 4610): 16421646. (in Chinese with English abstract)

    Google Scholar

    [140] GOGUEL J. Scale-dependent rockslide mechanisms,with emphasis on the role of pore fluid vaporization[M]//Developments in Geotechnical Engineering. Amsterdam:Elsevier,1978:693-705.

    Google Scholar

    [141] ERISMANN T H. Mechanisms of large landslides[J]. Rock Mechanics,1979,12(1):15 − 46. doi: 10.1007/BF01241087

    CrossRef Google Scholar

    [142] HABIB P. Production of gaseous pore pressure during rock slides[J]. Rock Mechanics,1975,7(4):193 − 197. doi: 10.1007/BF01246865

    CrossRef Google Scholar

    [143] GOGUEL J, PACHOUD A. Geology and dynamics of the rockfall of the granier range which occurred in November 1248. Bulletin, Bureau de Récherches Geologiques et Miniéres, Hydrogeologie, Lyon, 1972(1):29 − 38.

    Google Scholar

    [144] PINYOL N M, ALVARADO M, ALONSO E E, et al. Thermal effects in landslide mobility[J]. Géotechnique,2018,68(6):528 − 545.

    Google Scholar

    [145] ALONSO E E. Triggering and motion of landslides[J]. Géotechnique,2021,71(1):3 − 59.

    Google Scholar

    [146] TAMBURI A J. Creep of single rocks on bedrock[J]. Geological Society of America Bulletin,1974,85(3):351. doi: 10.1130/0016-7606(1974)85<351:COSROB>2.0.CO;2

    CrossRef Google Scholar

    [147] WANG Yufeng,DONG Jiajuan,CHENG Qianggong. Velocity-dependent frictional weakening of large rock avalanche basal facies:implications for rock avalanche hypermobility?[J]. Journal of Geophysical Research:Solid Earth,2017,122(3):1648 − 1676. doi: 10.1002/2016JB013624

    CrossRef Google Scholar

    [148] HU Wei,HUANG Runqiu,MCSAVENEY M,et al. Mineral changes quantify frictional heating during a large low-friction landslide[J]. Geology,2018,46(3):223 − 226. doi: 10.1130/G39662.1

    CrossRef Google Scholar

    [149] HU Wei,HUANG Runqiu,MCSAVENEY M,et al. Superheated steam,hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:field and experimental evidence[J]. Earth and Planetary Science Letters,2019,510:85 − 93. doi: 10.1016/j.jpgl.2019.01.005

    CrossRef Google Scholar

    [150] HE Siming,LIU Wei,WANG Juan. Dynamic simulation of landslide based on thermo-poro-elastic approach[J]. Computers & Geosciences,2015,75:24 − 32.

    Google Scholar

    [151] HUTCHINSON J N,BHANDARI R K. Untrained loading,a fundamental-mechanism of mud slide and other mass movements[J]. Geotechnique,1971,21(4):353 − 358. doi: 10.1680/geot.1971.21.4.353

    CrossRef Google Scholar

    [152] SEED H B. The fourth Terzaghi lecture:landslides during earthquakes due to liquefaction[J]. Journal of the Soil Mechanics and Foundations Division,1968,94(5):1053 − 1122. doi: 10.1061/JSFEAQ.0001182

    CrossRef Google Scholar

    [153] SASSA K,FUKUOKA H,WANG Gonghui,et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides,2004,1(1):7 − 19. doi: 10.1007/s10346-003-0004-y

    CrossRef Google Scholar

    [154] SASSA K. Development of a new cyclic loading ring-shear apparatus to study earthquake-induced landslides[R]. Tokyo:Ministry of Education,Science and Culture,Japan,1994:106.

    Google Scholar

    [155] SASSA K. Special lecture:Geotechnical model for the motion of landslides:Proc 5th International Symposium on Landslides,Lausanne,10–15 July 1988V1,P37–55. Publ Rotterdam:a Balkema,1988[J]. International Journal of Rock Mechanics and Mining Sciences \& Geomechanics Abstracts,1989,26:88.

    Google Scholar

    [156] SASSA K. The mechanism starting liquefied landslides and debris flows[C]//Proceedings of the 4th International Symposium on Landslides. Toronto:[s.n.],1984:349-354.

    Google Scholar

    [157] WANG Fawu,WAFID A N M,ZHANG Fanyu,et al. Tandikek and Malalak rapid and long runout landslides triggered by West Sumatra earthquake 2009 ( M7.6) in Indonesia[J]. Journal of the Japan Landslide Society,2011,48(4):215 − 220. doi: 10.3313/jls.48.215

    CrossRef Google Scholar

    [158] WANG Gonghui,JIANG Yao,CHANG Chengrui,et al. Volcaniclastic debris avalanche on Motomachi area of Izu-Oshima,Japan,triggered by severe storm:Phenomenon and mechanisms[J]. Engineering Geology,2019,251:24 − 36. doi: 10.1016/j.enggeo.2019.02.003

    CrossRef Google Scholar

    [159] XING Aiguo,WANG Gonghui,LI Bin,et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling,Guizhou,China[J]. Canadian Geotechnical Journal,2015,52(7):971 − 981. doi: 10.1139/cgj-2014-0122

    CrossRef Google Scholar

    [160] YIN Yueping,LI Bin,WANG Wenpei,et al. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering,2016,2(2):230 − 249. doi: 10.1016/J.ENG.2016.02.005

    CrossRef Google Scholar

    [161] TAKAHASHI T. Mechanical characteristics of debris flow[J]. Journal of the Hydraulics Division,1978,104(8):1153 − 1169. doi: 10.1061/JYCEAJ.0005046

    CrossRef Google Scholar

    [162] EGASHIRA S,HONDA N,ITOH T. Experimental study on the entrainment of bed material into debris flow[J]. Physics and Chemistry of the Earth,Part C:Solar,Terrestrial & Planetary Science,2001,26(9):645-650.

    Google Scholar

    [163] BOUCHUT F,FERNÁNDEZ-NIETO E D,MANGENEY A,et al. On new erosion models of Savage-Hutter type for avalanches[J]. Acta Mechanica,2008,199(1):181 − 208.

    Google Scholar

    [164] MANGENEY A. Landslide boost from entrainment[J]. Nature Geoscience,2011,4(2):77 − 78. doi: 10.1038/ngeo1077

    CrossRef Google Scholar

    [165] 殷跃平,王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [YIN Yueping,WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 398): 15131521. (in Chinese with English abstract)

    Google Scholar

    [166] 高杨,高浩源,李滨,等. 滑坡冲击铲刮变量的计算方法研究[J]. 计算力学学报,2022,39(1):105 − 112. [GAO Yang,GAO Haoyuan,LI Bin,et al. Study on calculation method of landslide impact and scraping variable[J]. Chinese Journal of Computational Mechanics,2022,39(1):105 − 112. (in Chinese with English abstract)] doi: 10.7511/jslx20201022001

    CrossRef Google Scholar

    GAO Yang, GAO Haoyuan, LI Bin, et al. Study on calculation method of landslide impact and scraping variable[J]. Chinese Journal of Computational Mechanics, 2022, 391): 105112. (in Chinese with English abstract) doi: 10.7511/jslx20201022001

    CrossRef Google Scholar

    [167] 高杨,李滨,高浩源,等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510 − 519. [GAO Yang,LI Bin,GAO Haoyuan,et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics,2020,26(4):510 − 519. (in Chinese with English abstract)]

    Google Scholar

    GAO Yang, LI Bin, GAO Haoyuan, et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics, 2020, 264): 510519. (in Chinese with English abstract)

    Google Scholar

    [168] WANG Wenpei,YIN Yueping,ZHU Sainan,et al. Dynamic analysis of a long-runout,flow-like landslide at Areletuobie,Yili River valley,northwestern China[J]. Bulletin of Engineering Geology and the Environment,2019,78(5):3143 − 3157. doi: 10.1007/s10064-018-1322-6

    CrossRef Google Scholar

    [169] 陆鹏源,侯天兴,杨兴国,等. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报,2016,35(6):1225 − 1232. [LU Pengyuan,HOU Tianxing,YANG Xingguo,et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(6):1225 − 1232. (in Chinese with English abstract)]

    Google Scholar

    LU Pengyuan, HOU Tianxing, YANG Xingguo, et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 356): 12251232. (in Chinese with English abstract)

    Google Scholar

    [170] VOELLMY A. Uber die Zerstorungskraft von Lawinen (On the destructive power of avalanche)[J]. Schweizerische Bauzeitung,1955,73:212 − 285.

    Google Scholar

    [171] MAHBOOB M A, IQBAL J, ATIF I. Modeling and simulation of glacier avalanche:A case study of gayari sector glaciers hazards assessment[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53(11):5824 − 5834.

    Google Scholar

    [172] HUNGR O,MORGENSTERN N R. Discussion:Experiments on the flow behavior of granular materials at high velocity in an open channel[J]. Géotechnique,1985,35(3):383 − 385.

    Google Scholar

    [173] DAVIES T R,MCSAVENEY M J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal,1999,36(2):313 − 320. doi: 10.1139/t98-108

    CrossRef Google Scholar

    [174] 崔鹏,邹强. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展,2016,35(2):137 − 147. [CUI Peng,ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography,2016,35(2):137 − 147. (in Chinese with English abstract)] doi: 10.18306/dlkxjz.2016.02.001

    CrossRef Google Scholar

    CUI Peng, ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography, 2016, 352): 137147. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2016.02.001

    CrossRef Google Scholar

    [175] FAN Xuanmei,DUFRESNE A,SIVA SUBRAMANIAN S,et al. The formation and impact of landslide dams:State of the art[J]. Earth-Science Reviews,2020,203:103116. doi: 10.1016/j.earscirev.2020.103116

    CrossRef Google Scholar

    [176] 孙萍,汪发武,殷跃平,等. 汶川地震高速远程滑坡机制实验研究[J]. 地震地质,2010,32(1):98 − 106. [SUN Ping,WANG Fawu,YIN Yueping,et al. An experimental study on the mechanism of rapid and long Run-out landslide triggered by Wenchuan earthquake[J]. Seismology and Geology,2010,32(1):98 − 106. (in Chinese with English abstract)]

    Google Scholar

    SUN Ping, WANG Fawu, YIN Yueping, et al. An experimental study on the mechanism of rapid and long Run-out landslide triggered by Wenchuan earthquake[J]. Seismology and Geology, 2010, 321): 98106. (in Chinese with English abstract)

    Google Scholar

    [177] DAI Fuchu,TU Xinbin,XU Chong,et al. Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake,China[J]. Geomorphology,2011,132(3/4):300 − 318.

    Google Scholar

    [178] 王玉峰,程谦恭,朱圻. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报,2012,31(6):1089 − 1106. [WANG Yufeng,CHENG Qiangong,ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1089 − 1106. (in Chinese with English abstract)]

    Google Scholar

    WANG Yufeng, CHENG Qiangong, ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 316): 10891106. (in Chinese with English abstract)

    Google Scholar

    [179] 胡卸文,顾成壮,牛彦博,等. 芦山地震触发大岩崩滑坡-碎屑流特征与运动过程[J]. 西南交通大学学报,2013,48(4):590 − 598. [HU Xiewen,GU Chengzhuang,NIU Yanbo,et al. Debris flow characteristics and movement process of dayanbeng landslide in Tianquan County triggered by “4•20” Lushan earthquake[J]. Journal of Southwest Jiaotong University,2013,48(4):590 − 598. (in Chinese with English abstract)]

    Google Scholar

    HU Xiewen, GU Chengzhuang, NIU Yanbo, et al. Debris flow characteristics and movement process of dayanbeng landslide in Tianquan County triggered by “4•20” Lushan earthquake[J]. Journal of Southwest Jiaotong University, 2013, 484): 590598. (in Chinese with English abstract)

    Google Scholar

    [180] 孟兴民,陈冠,郭鹏,等. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质,2013,33(4):1 − 15. [MENG Xingmin,CHEN Guan,GUO Peng,et al. Research of landslides and debris flows in Bailong river basin:Progress and prospect[J]. Marine Geology & Quaternary Geology,2013,33(4):1 − 15. (in Chinese with English abstract)]

    Google Scholar

    MENG Xingmin, CHEN Guan, GUO Peng, et al. Research of landslides and debris flows in Bailong river basin: Progress and prospect[J]. Marine Geology & Quaternary Geology, 2013, 334): 115. (in Chinese with English abstract)

    Google Scholar

    [181] 刘传正. 论崩塌滑坡-碎屑流高速远程问题[J]. 地质论评,2017,63(6):1563 − 1575. [LIU Chuanzheng. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review,2017,63(6):1563 − 1575. (in Chinese with English abstract)]

    Google Scholar

    LIU Chuanzheng. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review, 2017, 636): 15631575. (in Chinese with English abstract)

    Google Scholar

    [182] XING Aiguo,YUAN Xiaoyi,XU Qiang,et al. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley,Mianzhu,Sichuan,China[J]. Landslides,2017,14(1):83 − 98. doi: 10.1007/s10346-016-0707-5

    CrossRef Google Scholar

    [183] ZHANG Ming,MCSAVENEY M J. Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophysical Research Letters,2017,44(17):8814 − 8821. doi: 10.1002/2017GL073774

    CrossRef Google Scholar

    [184] CHEN Xiaoqing,HU Kai,CHEN Jiangang,et al. Laboratory investigation of the effect of initial dry density and grain size distribution on soil-water characteristic curves of wide-grading gravelly soil[J]. Geotechnical and Geological Engineering,2018,36(2):885 − 896.

    Google Scholar

    [185] 裴向军,崔圣华,黄润秋. 大光包滑坡启动机制:强震过程滑带动力扩容与水击效应[J]. 岩石力学与工程学报,2018,37(2):430 − 448. [PEI Xiangjun,CUI Shenghua,HUANG Runqiu. A model of initiation of Daguangbao landslide:Dynamic dilation and water hammer in sliding zone during strong seismic shaking[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(2):430 − 448. (in Chinese with English abstract)]

    Google Scholar

    PEI Xiangjun, CUI Shenghua, HUANG Runqiu. A model of initiation of Daguangbao landslide: Dynamic dilation and water hammer in sliding zone during strong seismic shaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 372): 430448. (in Chinese with English abstract)

    Google Scholar

    [186] 许冲,徐锡伟,周本刚,等. 同震滑坡发生概率研究——新一代地震滑坡危险性模型[J]. 工程地质学报,2019,27(5):1122 − 1130. [XU Chong,XU Xiwei,ZHOU Bengang,et al. Probability of coseismic landslides:A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology,2019,27(5):1122 − 1130. (in Chinese with English abstract)]

    Google Scholar

    XU Chong, XU Xiwei, ZHOU Bengang, et al. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 2019, 275): 11221130. (in Chinese with English abstract)

    Google Scholar

    [187] GUO Changbao,MONTGOMERY D R,ZHANG Yongshuang,et al. Evidence for repeated failure of the giant Yigong landslide on the edge of the Tibetan Plateau[J]. Scientific Reports,2020,10:14371. doi: 10.1038/s41598-020-71335-w

    CrossRef Google Scholar

    [188] 文宝萍,曾启强,闫天玺,等. 青藏高原东南部大型岩质高速远程崩滑启动地质力学模式初探[J]. 工程科学与技术,2020,52(5):38 − 49. [WEN Baoping,ZENG Qiqiang,YAN Tianxi,et al. Preliminary study on geomechanical model of large-scale rock mass in southeast Qinghai-Tibet Plateau starting from high-speed long-distance collapse and slip[J]. Advanced Engineering Sciences,2020,52(5):38 − 49. (in Chinese with English abstract)]

    Google Scholar

    WEN Baoping, ZENG Qiqiang, YAN Tianxi, et al. Preliminary study on geomechanical model of large-scale rock mass in southeast Qinghai-Tibet Plateau starting from high-speed long-distance collapse and slip[J]. Advanced Engineering Sciences, 2020, 525): 3849. (in Chinese with English abstract)

    Google Scholar

    [189] 罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学,2022,47(3):913 − 934. [LUO Gang,CHENG Qiangong,SHEN Weigang,et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science,2022,47(3):913 − 934. (in Chinese with English abstract)]

    Google Scholar

    LUO Gang, CHENG Qiangong, SHEN Weigang, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 473): 913934. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1772) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint