Citation: | JIE Honghu, JIANG Shuihua, CHANG Zhilu, HUANG Jinsong, HUANG Faming. Probabilistic inverse-analysis and reliability prediction of rainfall-induced landslides for slope with multi-source information[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 28-36. doi: 10.16031/j.cnki.issn.1003-8035.202309029 |
Probabilistic inverse-analysis is an essential approach to infer statistical characteristics of uncertain soil parameters, making the slope reliability assessment closer to engineering reality. However, current probabilistic inverse analysis rarely integrates multi-source information, including monitored data, field observation information, and slope survival records. Conducting the probabilistic inverse-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating the multi-source information is a challenging issue due to the involvement of thousands of random variables and the evaluation of high-dimensional likelihood functions. In this paper, a modified Bayesian updating with subset simulation (mBUS) method is combined with adaptive conditional sampling (aCS) algorithm to establish a framework for probabilistic inverse analysis of spatially variable soil parameters and reliability prediction of slopes. The effectiveness of this framework is validated using a highway slope as a case study. The research results show that the posterior statistical characteristics of soil parameters obtained by integrating multi-source information are in good agreement with field observation results. Additionally, the probability of slope failure under heavy rainfall on September 12, 2004 with the updated soil parameters is 23.1 %, which is in line with the actual slope instability. Within this framework, multi-source information can be fully utilized to address high-dimensional probabilistic inverse analysis problems.
[1] |
文海家, 张岩岩, 付红梅, 等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报,2018,31(2):15 − 29. [WEN Haijia, ZHANG Yanyan, FU Hongmei, et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport,2018,31(2):15 − 29. (in Chinese with English abstract)]
|
[2] |
胡康,任光明,常文娟,等. 基于节理不确定性的可靠度分析——以西藏某岩质边坡为例[J]. 中国地质灾害与防治学报,2022,33(2):53 − 60. [HU Kang, REN Guangming, CHANG Wenjuan, et al. Reliability analysis based on joint uncertainty:A case study of a rock slope in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):53 − 60. (in Chinese with English abstract)]
|
[3] |
陈忠源, 戴自航, 简文彬. 基于因子权重反分析的新近失稳土质边坡稳定性评价云模型[J]. 中国地质灾害与防治学报,2023,34(4):125 − 133. [CHEN Zhongyuan, DAI Zihang, JIAN Wenbin. Cloud model for stability evaluation of recently failed soil slopes based on weight inversion of influencing factors[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):125 − 133. (in Chinese with English abstract)]
|
[4] |
王继玲, 周维博, 孙梨梨, 等. 石川河富平地下水库渗透系数空间变异性研究[J]. 水文地质工程地质,2023,50(3):34 − 43. [WANG Jiling, ZHOU Weibo, SUN Lili, et al. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology,2023,50(3):34 − 43. (in Chinese with English abstract)]
|
[5] | YANG Haoqing,ZHANG Lulu,PAN Qiujing,et al. Bayesian estimation of spatially varying soil parameters with spatiotemporal monitoring data[J]. Acta Geotechnica,2021,16(1):263 − 278. doi: 10.1007/s11440-020-00991-z |
[6] | CAO Zijun,WANG Yu,LI Dianqing. Site-specific characterization of soil properties using multiple measurements from different test procedures at different locations–A Bayesian sequential updating approach[J]. Engineering Geology,2016,211:150 − 161. doi: 10.1016/j.enggeo.2016.06.021 |
[7] | DIAZDELAO F A,GARBUNO-INIGO A,AU S K,et al. Bayesian updating and model class selection with Subset Simulation[J]. Computer Methods in Applied Mechanics and Engineering,2017,317:1102 − 1121. doi: 10.1016/j.cma.2017.01.006 |
[8] | STRAUB D,PAPAIOANNOU I. Bayesian updating with structural reliability methods[J]. Journal of Engineering Mechanics,2015,141(3):04014134. doi: 10.1061/(ASCE)EM.1943-7889.0000839 |
[9] |
刘贤, 揭鸿鹄, 蒋水华, 等. 融合历史降雨下斜坡稳定性观测信息的可靠度分析[J]. 地球科学,2023,48(5):1865 − 1874. [LIU Xian, JIE Honghu, JIANG Shuihua, et al. Slope reliability analysis incorporating observation of stability performance under a past rainfall event[J]. Earth Science,2023,48(5):1865 − 1874. (in Chinese with English abstract)]
|
[10] |
曹子君, 胡超, 苗聪, 等. 基于分层贝叶斯学习的滨海软土地层高效识别方法[J]. 地球科学,2023,48(5):1730 − 1741. [CAO Zijun, HU Chao, MIAO Cong, et al. Efficient identification method of coastal soft soil stratum based on hierarchical Bayesian learning[J]. Earth Science,2023,48(5):1730 − 1741. (in Chinese with English abstract)]
|
[11] | DEPINA I,OGUZ E A,THAKUR V. Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models[J]. Computers and Geotechnics,2020,125:103660. doi: 10.1016/j.compgeo.2020.103660 |
[12] | PAPAIOANNOU I,BETZ W,ZWIRGLMAIER K,et al. MCMC algorithms for subset simulation[J]. Probabilistic Engineering Mechanics,2015,41:89 − 103. doi: 10.1016/j.probengmech.2015.06.006 |
[13] | ZHANG J,ZHANG L M,TANG W H. Slope reliability analysis considering site-specific performance information[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(3):227 − 238. doi: 10.1061/(ASCE)GT.1943-5606.0000422 |
[14] | AU S K,BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,16(4):263 − 277. doi: 10.1016/S0266-8920(01)00019-4 |
[15] | WANG C H,FANG Li,CHANG D T T,et al. Back-analysis of a rainfall-induced landslide case history using deterministic and random limit equilibrium methods[J]. Engineering Geology,2023,317:107055. doi: 10.1016/j.enggeo.2023.107055 |
[16] |
蒋水华, 李典庆, 周创兵, 等. 考虑参数空间变异性的非饱和土坡可靠度分析[J]. 岩土力学,2014,35(9):2569 − 2578. [JIANG Shuihua, LI Dianqing, ZHOU Chuangbing, et al. Reliability analysis of unsaturated slope considering spatial variability[J]. Rock and Soil Mechanics,2014,35(9):2569 − 2578. (in Chinese with English abstract)]
|
[17] | FREDLUND D G,XING Anqing,HUANG Shangyan. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(4):533 − 546. doi: 10.1139/t94-062 |
[18] | YANG Haoqing,ZHANG Lulu,XUE Jianfeng,et al. Unsaturated soil slope characterization with Karhunen–Loève and polynomial chaos via Bayesian approach[J]. Engineering with Computers,2019,35(1):337 − 350. doi: 10.1007/s00366-018-0610-x |
[19] | HUANG J,GRIFFITHS D V. Determining an appropriate finite element size for modelling the strength of undrained random soils[J]. Computers and Geotechnics,2015,69:506 − 513. doi: 10.1016/j.compgeo.2015.06.020 |
[20] | LIU Xin,WANG Yu,KOO R C H,et al. Development of a slope digital twin for predicting temporal variation of rainfall-induced slope instability using past slope performance records and monitoring data[J]. Engineering Geology,2022,308:106825. doi: 10.1016/j.enggeo.2022.106825 |
[21] | ZHANG J,ZHANG L M,TANG W H. Bayesian framework for characterizing geotechnical model uncertainty[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(7):932 − 940. doi: 10.1061/(ASCE)GT.1943-5606.0000018 |
Illustration diagram of slope numerical model
Rainfall data for September 10−11, 2004
A typical realization of the random fields of saturated hydraulic conductivities and corresponding seepage analysis results
Comparison of pressure heads and factors of safety calculated using the surrogate model and finite element method
Comparison of the posterior PDFs of ks at two arbitrary locations on the slope
The prior and posterior distributions of pressure heads at the 4 monitoring points
Spatial distribution of posterior mean and standard deviation of effective cohesion and internal friction angle
PDFs of FS at the end of September 11, 2004 with incorporating different information
Variation of prior and posterior probability of slope failure with rainfall duration