Citation: | JIANG Tao, CUI Shenghua, RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall: A case study of the Qianjin square landslide in Wanyuan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 20-30. doi: 10.16031/j.cnki.issn.1003-8035.202207025 |
In recent years, there has been a frequent occurrence of geological disasters caused by the coupling of human engineering activities and rainfall environment. However, research on the mechanism of coupling has not been deeply explored. In this paper, the landslide of Qianjin square in Wanyuan City induced by the coupling of excavation and rainfall is taken as an example, and the characteristics and formation mechanism of landslide deformation and failure are analyzed by combining the monitoring data of surface displacement and deep displacement of the landslide of Qianjin square and the rainfall data. The study shows that: (1) excavation is the main reason for the reactivation of the old landslide, while rainfall plays a triggering and accelerating role; (2) excavation provides good airspace conditions for the landslide on the one hand , and on the other hand causes the soil behind it to lose support, leading to the misalignment of the landslide from front to back; (3) after excavation, long-term strong to moderate rainfall in the study area, combined with tension cracks caused by excavation, make it easier for surface water to enter the interior of the slope. The bedrock fracture water is replenished by atmospheric rainfall, resulting in some unsaturated soil becoming saturated soil, increasing the pressure of pressurized water and decreasing effective stress. Additionally, groundwater may reach the slip zone and drive the deformation development. Finally, the process mechanism of landslide induced by excavation and rainfall coupling is proposed as “excavation-slope multi-stage cracking-concentrated rainfall-slip zone weakening-accelerated deformation”.
[1] | ZHAO Bo,YUAN Lei,GENG Xueyu,et al. Deformation characteristics of a large landslide reactivated by human activity in Wanyuan City,Sichuan Province,China[J]. Landslides,2022,19(5):1131 − 1141. doi: 10.1007/s10346-022-01853-3 |
[2] | 薛振勇,侯书云. 人类活动诱发的地质灾害—天水锻压机床厂滑坡[J]. 中国地质灾害与防治学报,1991,2(4):54 − 62. [XUE Zhenyong,HOU Shuyun. The geological hazard induced by human activity:The landslide in Tianshui forging &. pressing machine tool factory[J]. The Chinese Journal of Geological Hazard and Control,1991,2(4):54 − 62. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.1991.04.007 XUE Zhenyong, HOU Shuyun. The geological hazard induced by human activity—the landslide in Tianshui forging &. pressing machine tool factory[J]. The Chinese Journal of Geological Hazard and Control, 1991, 2(4): 54-62. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.1991.04.007 |
[3] | 肖超,金福喜,刘海鸿,等. 开挖与降雨作用下边坡失稳机理及模拟分析[J]. 工程地质学报,2012,20(1):37 − 43. [XIAO Chao,JIN Fuxi,LIU Haihong,et al. Mechanism of slope failure and numerical simulation analysis under slope excavation and rainfall infiltration[J]. Journal of Engineering Geology,2012,20(1):37 − 43. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.01.006 XIAO Chao, JIN Fuxi, LIU Haihong, et al. Mechanism of slope failure and numerical simulation analysis under slope excavation and rainfall infiltration[J]. Journal of Engineering Geology, 2012, 20(1): 37-43. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.01.006 |
[4] | 刘震涛,尚彦军,邵鹏,等. 降雨与开挖联合作用下边坡位移矢量及速率变化分析—以韩江高陂水利枢纽右岸尾水渠边坡为例[J]. 工程地质学报,2020,28(1):122 − 131. [LIU Zhentao,SHANG Yanjun,SHAO Peng,et al. Analysis on variations of displacement rates under influences of rainfall and excavation:Taking right bank slope of Gaobei key water control project as case study[J]. Journal of Engineering Geology,2020,28(1):122 − 131. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-294 LIU Zhentao, SHANG Yanjun, SHAO Peng, et al. Analysis on variations of displacement rates under influences of rainfall and excavation—taking right bank slope of Gaobei key water control project as case study[J]. Journal of Engineering Geology, 2020, 28(1): 122-131. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-294 |
[5] | 李明, 石晋旭, 王昌贤, 等. 滑坡耦合效应及耦合参数研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2650-2655 LI Ming, SHI Jinxu, WANG Changxian, et al. Study on coupling effect and coupling parameter of the landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup 1): 2650-2655. (in Chinese with English abstract) |
[6] | ZHOU Zhou,SHEN Junhui,LI Ying,et al. Mechanism of colluvial landslide induction by rainfall and slope construction:A case study[J]. Journal of Mountain Science,2021,18(4):1013 − 1033. doi: 10.1007/s11629-020-6048-9 |
[7] | 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract) WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9-17. (in Chinese with English abstract) |
[8] | 李高,谭建民,王世梅,等. 滑坡对降雨响应的多指标监测及综合预警探析—以赣南罗坳滑坡为例[J]. 地学前缘,2021,28(6):283 − 294. [LI Gao,TAN Jianmin,WANG Shimei,et al. Multi-index monitoring and comprehensive early warning of landslides in response to rainfall:An example of the Luo’ao landslide in southern Jiangxi Province[J]. Earth Science Frontiers,2021,28(6):283 − 294. (in Chinese with English abstract) doi: 10.13745/j.esf.sf.2021.7.17 LI Gao, TAN Jianmin, WANG Shimei, et al. Multi-index monitoring and comprehensive early warning of landslides in response to rainfall: an example of the Luo’ao landslide in southern Jiangxi Province[J]. Earth Science Frontiers, 2021, 28(6): 283-294. (in Chinese with English abstract) doi: 10.13745/j.esf.sf.2021.7.17 |
[9] | 张志兼,黄勋,蔡雨微,等. 三峡库区武隆段滑坡灾害驱动因子演变格局与人类活动的影响[J]. 中国地质灾害与防治学报,2022,33(3):39 − 50. [ZHANG Zhijian,HUANG Xun,CAI Yuwei,et al. The evolution pattern and influence of human activities of landslide driving factors in Wulong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):39 − 50. (in Chinese with English abstract) ZHANG Zhijian, HUANG Xun, CAI Yuwei, et al. The evolution pattern and influence of human activities of landslide driving factors in Wulong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 39-50. (in Chinese with English abstract) |
[10] | 黄晓虎,易武,龚超,等. 开挖致使古滑坡复活变形机理研究[J]. 岩土工程学报,2020,42(7):1276 − 1285. [HUANG Xiaohu,YI Wu,GONG Chao,et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1276 − 1285. (in Chinese with English abstract) HUANG Xiaohu, YI Wu, GONG Chao, et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. (in Chinese with English abstract) |
[11] | 裴向军,袁广,张晓超,等. 坡脚开挖诱发滑坡机理—以沙井驿滑坡为例[J]. 山地学报,2017,35(2):195 − 202. [PEI Xiangjun,YUAN Guang,ZHANG Xiaochao,et al. Study on the mechanism of the loess landslide triggered by slope toe excavation:For the example of the landslide of shajingyi[J]. Mountain Research,2017,35(2):195 − 202. (in Chinese with English abstract) doi: 10.16089/j.cnki.1008-2786.000212 PEI Xiangjun, YUAN Guang, ZHANG Xiaochao, et al. Study on the mechanism of the loess landslide triggered by slope toe excavation—for the example of the landslide of shajingyi[J]. Mountain Research, 2017, 35(2): 195-202. (in Chinese with English abstract) doi: 10.16089/j.cnki.1008-2786.000212 |
[12] | 宋琨,陈伦怡,刘艺梁,等. 降雨诱发深层老滑坡复活变形的动态作用机制[J]. 地球科学,2022,47(10):3665 − 3676. [SONG Kun,CHEN Lunyi,LIU Yiliang,et al. Dynamic mechanism of rain infiltration in deep-seated landslide reactivate deformation[J]. Earth Science,2022,47(10):3665 − 3676. (in Chinese with English abstract) SONG Kun, CHEN Lunyi, LIU Yiliang, et al. Dynamic mechanism of rain infiltration in deep-seated landslide reactivate deformation[J]. Earth Science, 2022, 47(10): 3665-3676. (in Chinese with English abstract) |
[13] | 李巍岳,刘春,SCAIONI M,等. 基于滑坡敏感性与降雨强度-历时的中国浅层降雨滑坡时空分析与模拟[J]. 中国科学:地球科学,2017,47(4):473 − 484. [LI Weiyue,LIU Chun,SCAIONI M,et al. Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds[J]. Scientia Sinica (Terrae),2017,47(4):473 − 484. (in Chinese) doi: 10.1360/N072016-0129 LI Weiyue, LIUChun, SCAIONI M, et al. Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds[J]. Scientia Sinica (Terrae), 2017, 47(4): 473-484. (in Chinese) doi: 10.1360/N072016-0129 |
[14] | 杨城. 降雨与开挖方式对黄土边坡稳定性影响分析——以榆林市清涧县某边坡为例[D]. 西安: 长安大学, 2020 YANG Cheng. Analysis of the influence of rainfall and excavation methods on the stability of loess slopes: Taking a slope in Qingjian County, Yulin City as an example[D]. Xi’an: Changan University, 2020. (in Chinese with English abstract) |
[15] | 熊珅,易武,王力,等. 三峡库区八字门滑坡变形破坏机理分析[J]. 中国地质灾害与防治学报,2019,30(5):9 − 18. [XIONG Shen,YI Wu,WANG Li,et al. Analysis of deformation and failure mechanism of Bazimen Landslide in Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):9 − 18. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.05.02 XIONG Shen, YI Wu, WANG Li, et al. Analysis of deformation and failure mechanism of Bazimen Landslide in Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5): 9-18. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.05.02 |
[16] | 胡华,吴轩,张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua,WU Xuan,ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-11 HU Hua, WU Xuan, ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92-97. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-11 |
[17] | WANG Huanling,JIANG Zihua,XU Weiya,et al. Physical model test on deformation and failure mechanism of deposit landslide under gradient rainfall[J]. Bulletin of Engineering Geology and the Environment,2022,81(1):66. doi: 10.1007/s10064-021-02566-y |
[18] | 徐兴华,尚岳全,唐小明,等. 降雨作用及坡脚开挖激发路堑滑坡的灾变效应[J]. 中国地质灾害与防治学报,2013,24(4):6 − 15. [XU Xinghua,SHANG Yuequan,TANG Xiaoming,et al. Catastrophic effect of landslide under rainfall condition and excavation at foot[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):6 − 15. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2013.04.010 XU Xinghua, SHANG Yuequan, TANG Xiaoming, et al. Catastrophic effect of landslide under rainfall condition and excavation at foot[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4): 6-15. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2013.04.010 |
[19] | 吴江鹏,章广成,侯赠. 开挖及降雨作用下土质边坡变形破坏机理[J]. 湖南科技大学学报(自然科学版),2015,30(2):73 − 79. [WU Jiangpeng,ZHANG Guangcheng,HOU Zeng. Analysis on soil slope deformation failure mechanism under slope excavation and rainfall infiltration[J]. Journal of Hunan University of Science & Technology (Natural Science Edition),2015,30(2):73 − 79. (in Chinese with English abstract) WU Jiangpeng, ZHANG Guangcheng, HOU Zeng. Analysis on soil slope deformation failure mechanism under slope excavation and rainfall infiltration[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2015, 30(2): 73-79. (in Chinese with English abstract) |
[20] | 蔡军,许胜才. 基于FLAC3D软件FISH语言二次开发的降雨工况下航道工程开挖边坡渗流场的分析[J]. 水电能源科学,2021,39(10):156 − 159. [CAI Jun,XU Shengcai. Seepage field analysis of channel slope excavation under rainfall condition based on secondary development of FLAC3D software with the FISH language[J]. Water Resources and Power,2021,39(10):156 − 159. (in Chinese with English abstract) CAI Jun, XU Shengcai. Seepage field analysis of channel slope excavation under rainfall condition based on secondary development of FLAC3D software with the FISH language[J]. Water Resources and Power, 2021, 39(10): 156-159. (in Chinese with English abstract) |
[21] | 向贵府,许模,崔杰,等. 四川省万源市花楼乡董家梁滑坡特征及成因机制[J]. 南水北调与水利科技,2017,15(1):145 − 149. [XIANG Guifu,XU Mo,CUI Jie,et al. Study on characteristics and formation mechanism of Dongjialiang landslide in Hualou Town,Wanyuan City,Sichuan Provinc[J]. South-to-North Water Transfers and Water Science & Technology,2017,15(1):145 − 149. (in Chinese with English abstract) doi: 10.13476/j.cnki.nsbdqk.2017.01.024 XIANG Guifu, XU Mo, CUI Jie, et al. Study on characteristics and formation mechanism of Dongjialiang landslide in Hualou Town, Wanyuan City, Sichuan Provinc[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(1): 145-149. (in Chinese with English abstract) doi: 10.13476/j.cnki.nsbdqk.2017.01.024 |
[22] | 杨耀先,胡泽勇,路富全,等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象,2022,41(1):1 − 10. [YANG Yaoxian,HU Zeyong,LU Fuquan,et al. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology,2022,41(1):1 − 10. (in Chinese with English abstract) YANG Yaoxian, HU Zeyong, LU Fuquan, et al. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(1): 1-10. (in Chinese with English abstract) |
[23] | 雷德鑫,易武. 三峡库区王家坡滑坡降雨阈值分析[J]. 中国地质灾害与防治学报,2018,29(5):95 − 101. [LEI Dexin,YI Wu. Analysis of rainfall threshold of the Wangjiapo Landslide in the Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):95 − 101. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2018.05.16 LEI Dexin, YI Wu. Analysis of rainfall threshold of the Wangjiapo Landslide in the Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 95-101. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2018.05.16 |
[24] | 张珍,李世海,马力. 重庆地区滑坡与降雨关系的概率分析[J]. 岩石力学与工程学报,2005,24(17):3185 − 3191. [ZHANG Zhen,LI Shihai,MA Li. Probability analysis of relationship between landslide and rainfall in Chongqing area[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3185 − 3191. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.17.029 ZHANG Zhen, LI Shihai, MA Li. Probability analysis of relationship between landslide and rainfall in Chongqing area[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3185-3191. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.17.029 |
[25] | 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1):27 − 34. [HU Aiguo,ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):27 − 34. (in Chinese with English abstract) HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27-34. (in Chinese with English abstract) |
[26] | 王恭先. 滑坡学与滑坡防治技术[M]. 北京: 中国铁道出版社, 2004 WANG Gongxian. Landslide science and landslide prevention technology[M]. Beijing: China Railway Publishing House, 2004. (in Chinese ) |
[27] | 王刚,孙萍,吴礼舟,等. 降雨诱发浅表层黄土滑坡机理实验研究[J]. 工程地质学报,2017,25(5):1252 − 1263. [WANG Gang,SUN Ping,WU Lizhou,et al. Experimental study on mechanism of shallow loess landslides induced by rainfall[J]. Journal of Engineering Geology,2017,25(5):1252 − 1263. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.05.010 WANG Gang, SUN Ping, WU Lizhou, et al. Experimental study on mechanism of shallow loess landslides induced by rainfall[J]. Journal of Engineering Geology, 2017, 25(5): 1252-1263. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.05.010 |
Geological formation map of Wanyuan City
Aerial view of the landslide area
Engineering geological cross-section profile of landslide zone 1-1’
Contour map of groundwater level
Geological formation map of the landslide engineering in the Qianjin square area
Ground surface displacement monitoring data
Deep displacement monitoring data
Groundwater level monitoring plot
The evolutionary pattern of landslide in the Qianjin square area