China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2022 Vol. 33, No. 5
Article Contents

SUN Bin, ZHU Chuanbing, KANG Xiaobo, YE Lei, LIU Yi. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119-127. doi: 10.16031/j.cnki.issn.1003-8035.202204003
Citation: SUN Bin, ZHU Chuanbing, KANG Xiaobo, YE Lei, LIU Yi. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119-127. doi: 10.16031/j.cnki.issn.1003-8035.202204003

Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province

More Information
  • In this paper, taking debris flow in Dongchuan as the research object, nine influence factors are chosen as the selected indices, including the elevation, slope, aspect, relief, curvature, engineering rock group, distance to faults, distance to faults rivers, and land use types, sample data from 144 debris flows in the study area are used to establish the Dongchuan debris flow susceptibility assessment system. Based on the information model and GIS platform, the information vaule of each factor classification is calculated, and the natural discontinuity method is used to divide the debris flow susceptibility into 4 levels: extremely high-prone areas, high-prone areas, medium-prone areas, and low-prone areas in the study area. The results show that the number of debris flow disasters in the extremely high and high-risk areas in the study area accounted for 94.44%, and the AUC value was 0.876, indicating that the selection of evaluation indicators was reasonable, and the information model was suitable for the evaluation of debris flow susceptibility in Dongchuan.

  • 加载中
  • [1] 岳溪柳,黄玫,徐庆勇,等. 贵州省喀斯特地区泥石流灾害易发性评价[J]. 地球信息科学学报,2015,17(11):1395 − 1403. [YUE Xiliu,HUANG Mei,XU Qingyong,et al. The susceptibility assessment of debris flow in karst region of Guizhou Province[J]. Journal of Geo-Information Science,2015,17(11):1395 − 1403. (in Chinese with English abstract)

    Google Scholar

    [2] 陈剑,黎艳,许冲. 金沙江干热河谷区泥石流易发性评价模型及应用[J]. 山地学报,2016,34(4):460 − 467. [CHEN Jian,LI Yan,XU Chong. Susceptibility assessment model of debris flows in the dry-hot valley of the Jinsha River and its application[J]. Mountain Research,2016,34(4):460 − 467. (in Chinese with English abstract)

    Google Scholar

    [3] 王劲峰. 中国自然灾害区划: 灾害区划、影响评价、减灾对策[M]. 北京: 中国科学技术出版社, 1995

    Google Scholar

    WANG Jinfeng. Regionalization of hazards in China: Regionalization, assessment and strategies [M]. Beijing: China Science and Technology Press, 1995. (in Chinese)

    Google Scholar

    [4] 殷坤龙,朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘,2001,8(2):279 − 284. [YIN Kunlong,ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers,2001,8(2):279 − 284. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2001.02.010

    CrossRef Google Scholar

    [5] DYMOND J R,JESSEN M R,LOVELL L R. Computer simulation of shallow landsliding in New Zealand hill country[J]. International Journal of Applied Earth Observation and Geoinformation,1999,1(2):122 − 131. doi: 10.1016/S0303-2434(99)85005-3

    CrossRef Google Scholar

    [6] JIBSON R W,HARP E L,MICHAEL J A. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology,2000,58(3/4):271 − 289. doi: 10.1016/S0013-7952(00)00039-9

    CrossRef Google Scholar

    [7] TIEN BUI D,PRADHAN B,LOFMAN O,et al. Landslide susceptibility assessment in the Hoa Binh Province of Vietnam:A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks[J]. Geomorphology,2012,171/172:12 − 29. doi: 10.1016/j.geomorph.2012.04.023

    CrossRef Google Scholar

    [8] PRADHAN B,LEE S. Delineation of landslide hazard areas on Penang Island,Malaysia,by using frequency ratio,logistic regression,and artificial neural network models[J]. Environmental Earth Sciences,2010,60(5):1037 − 1054. doi: 10.1007/s12665-009-0245-8

    CrossRef Google Scholar

    [9] 胡凯衡,崔鹏,韩用顺,等. 基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价[J]. 中国水土保持科学,2012,10(1):12 − 18. [HU Kaiheng,CUI Peng,HAN Yongshun,et al. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods[J]. Science of Soil and Water Conservation,2012,10(1):12 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-3007.2012.01.003

    CrossRef Google Scholar

    [10] 焦方谦,赵新生,陈川. 证据权模型在泥石流灾害易发性评价中的应用[J]. 干旱区地理,2013,36(6):1111 − 1124. [JIAO Fangqian,ZHAO Xinsheng,CHEN Chuan. Debris flow hazard susceptibility evaluation application with weighted evidences model[J]. Arid Land Geography,2013,36(6):1111 − 1124. (in Chinese with English abstract)

    Google Scholar

    [11] 刘磊,殷坤龙,王佳佳,等. 降雨影响下的区域滑坡危险性动态评价研究—以三峡库区万州主城区为例[J]. 岩石力学与工程学报,2016,35(3):558 − 569. [LIU Lei,YIN Kunlong,WANG Jiajia,et al. Dynamic evaluation of regional landslide hazard due to rainfall:A case study in Wanzhou central district,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(3):558 − 569. (in Chinese with English abstract)

    Google Scholar

    [12] 刘磊. 三峡水库万州区库岸滑坡灾害风险评价研究[D]. 武汉: 中国地质大学, 2016

    Google Scholar

    LIU Lei. Assessment of landslide risk along Wanzhou area in Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2016. (in Chinese with English abstract)

    Google Scholar

    [13] CHEN W,POURGHASEMI H R,KORNEJADY A,et al. Landslide spatial modeling:Introducing new ensembles of ANN,MaxEnt,and SVM machine learning techniques[J]. Geoderma,2017,305:314 − 327. doi: 10.1016/j.geoderma.2017.06.020

    CrossRef Google Scholar

    [14] ZHOU C,YIN K L,CAO Y,et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir,China[J]. Engineering Geology,2016,204:108 − 120. doi: 10.1016/j.enggeo.2016.02.009

    CrossRef Google Scholar

    [15] TIEN BUI D,TUAN T A,KLEMPE H,et al. Spatial prediction models for shallow landslide hazards:A comparative assessment of the efficacy of support vector machines,artificial neural networks,kernel logistic regression,and logistic model tree[J]. Landslides,2016,13(2):361 − 378. doi: 10.1007/s10346-015-0557-6

    CrossRef Google Scholar

    [16] 吴孝情,赖成光,陈晓宏,等. 基于随机森林权重的滑坡危险性评价:以东江流域为例[J]. 自然灾害学报,2017,26(5):119 − 129. [WU Xiaoqing,LAI Chengguang,CHEN Xiaohong,et al. A landslide hazard assessment based on random forest weight:A case study in the Dongjiang River basin[J]. Journal of Natural Disasters,2017,26(5):119 − 129. (in Chinese with English abstract)

    Google Scholar

    [17] PARK I,LEE S. Spatial prediction of landslide susceptibility using a decision tree approach:A case study of the Pyeongchang area,Korea[J]. International Journal of Remote Sensing,2014,35(16):6089 − 6112. doi: 10.1080/01431161.2014.943326

    CrossRef Google Scholar

    [18] 庄育龙,田原,程楚云. 基于深度神经网络的滑坡危险性评价:以深圳市为例[J]. 地理与地理信息科学,2019,35(2):104 − 110. [ZHUANG Yulong,TIAN Yuan,CHENG Chuyun. Landslide susceptibility assessment based on deep neural network:A case study of Shenzhen[J]. Geography and Geo-Information Science,2019,35(2):104 − 110. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0504.2019.02.016

    CrossRef Google Scholar

    [19] 王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价—以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797 − 808. [WANG Jiajia,YIN Kunlong,XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value:A case study of Wanzhou District,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):797 − 808. (in Chinese with English abstract)

    Google Scholar

    [20] 胡瑞林,范林峰,王珊珊,等. 滑坡风险评价的理论与方法研究[J]. 工程地质学报,2013,21(1):76 − 84. [HU Ruilin,FAN Linfeng,WANG Shanshan,et al. Theory and method for landslide risk assessment-current status and future development[J]. Journal of Engineering Geology,2013,21(1):76 − 84. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.01.009

    CrossRef Google Scholar

    [21] 程英建,石豫川,石胜伟,等. 数量化理论在泥石流易发性预测中的应用[J]. 水文地质工程地质,2015,42(1):140 − 145. [CHENG Yingjian,SHI Yuchuan,SHI Shengwei,et al. Prediction of debris flow occurrence based on the quantification theory[J]. Hydrogeology & Engineering Geology,2015,42(1):140 − 145. (in Chinese with English abstract)

    Google Scholar

    [22] 李晨阳, 王新春, 何春珍, 等. 全国1∶200 000 数字地质图(公开版)空间数据库(V1)[DB]. 中国地质调查局发展研究中心, 中国地质调查局, 全国地质资料馆, 1957

    Google Scholar

    LI Chenyang, WANG Xinchun, HE Chunzhen, etal. China national digital geological map (public version at 1∶200000 scale) spatial database (V1)[DB]. Development and Research Center, China Geological Survey, China Geological Survey, National Geological Archives of China, 1957. (in Chinese)

    Google Scholar

    [23] 高克昌,崔鹏,赵纯勇,等. 基于地理信息系统和信息量模型的滑坡危险性评价:以重庆万州为例[J]. 岩石力学与工程学报,2006,25(5):991 − 996. [GAO Kechang,CUI Peng,ZHAO Chunyong,et al. Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):991 − 996. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.05.020

    CrossRef Google Scholar

    [24] 王宁涛,彭轲,黎清华,等. 基于RS和GIS的地质灾害易发性定量评价:以湖北省五峰县为例[J]. 地学前缘,2012,19(6):221 − 229. [WANG Ningtao,PENG Ke,LI Qinghua,et al. Quantitative evaluation of geological disaster liability based on RS & GIS analysis:A case study of Wufeng County,Hubei Province[J]. Earth Science Frontiers,2012,19(6):221 − 229. (in Chinese with English abstract)

    Google Scholar

    [25] 牛全福,程维明,兰恒星,等. 基于信息量模型的玉树地震次生地质灾害危险性评价[J]. 山地学报,2011,29(2):243 − 249. [NIU Quanfu,CHENG Weiming,LAN Hengxing,et al. Susceptibility assessment of secondary geological disaster based on information value methodology for Yushu earthquake region[J]. Journal of Mountain Science,2011,29(2):243 − 249. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2011.02.014

    CrossRef Google Scholar

    [26] HOYER A,KUSS O. Meta-analysis of full ROC curves with flexible parametric distributions of diagnostic test values[J]. Research Synthesis Methods,2020,11(2):301 − 313. doi: 10.1002/jrsm.1395

    CrossRef Google Scholar

    [27] WALKER S P. The ROC curve redefined - optimizing sensitivity (and specificity) to the lived reality of cancer[J]. The New England Journal of Medicine,2019,380(17):1594 − 1595. doi: 10.1056/NEJMp1814951

    CrossRef Google Scholar

    [28] OMAR L,IVRISSIMTZIS I. Using theoretical ROC curves for analysing machine learning binary classifiers[J]. Pattern Recognition Letters,2019,128:447 − 451. doi: 10.1016/j.patrec.2019.10.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2222) PDF downloads(200) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint