China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2021 Vol. 32, No. 4
Article Contents

ZHANG Jing, TIAN Shujun, HOU Pengli. The material supply ability analysis of debris flows based on area-hypsometric integral and area-gradient integral[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 9-16. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-02
Citation: ZHANG Jing, TIAN Shujun, HOU Pengli. The material supply ability analysis of debris flows based on area-hypsometric integral and area-gradient integral[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 9-16. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-02

The material supply ability analysis of debris flows based on area-hypsometric integral and area-gradient integral

More Information
  • The loose material is produced by erosion and evolution of basins. The material supply ability affects the susceptibility degree and activity frequency of debris flow for debris flow basins. Taking 147 debris flow basins as a case, located in parts of Dujiangyan and Wenchuan, using the area-hypsometric integral and the area-gradient integral, the geomorphologic evolution stage and erosion intensity were quantified. Combined with the geomorphologic evolution stage and erosion intensity, the material supply ability analysis of debris flows was carried out. The results are as follows: it is not enough to explain the susceptibility degree only with the geomorphologic evolution stage or erosion intensity; the outbreaks of debris flow are mainly concentrating on the stage of maturity, maturity partial youth age and the erosion intensity Ⅲ—Ⅴ level; with the improvement of the material supply ability, the outbreak rate of debris flow increases, and the basin area plays a significant role in limiting the formation of debris flow; for medium, strong, and extremely strong supply ability levels, debris flow preponderant development area ranges are: 20—35, 10—50, 10—40 km2 respectively, in the study area; the investigation of material reserve and distribution should be carried out on the basin, which with a high level of material supply ability and in the optimal range of area and with unapparent debris flow activity for a long time, to confirm the stability of debris flow and formulate disaster control plans reasonably.

  • 加载中
  • [1] DAVIS W M. The geographical cycle[J]. Geographical Journal,1899,14(5):481 − 504. doi: 10.2307/1774538

    CrossRef Google Scholar

    [2] STRAHLER A N. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin,1952,63(11):1117 − 1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    CrossRef Google Scholar

    [3] LUO W. Quantifying groundwater-sapping landforms with a hypsometric technique[J]. Journal of Geophysical Research-Planets,2000,105(E1):1685 − 1694. doi: 10.1029/1999JE001096

    CrossRef Google Scholar

    [4] COHEN S, WILLGOOSE G, HANCOCK G. A methodology for calculating the spatial distribution of the area-slope equation and the hypsometric integral within a catchment[J]. Journal of Geophysical Research-Earth Surface,2008,113(F3).

    Google Scholar

    [5] RABII F, ACHOUR H, REBAI N, et al. Hypsometric integral for the identification of neotectonic and lithology differences in low tectonically active area (Utica-Mateur region, north-eastern Tunisia)[J]. Geocarto International,2017,32(11):1229 − 1242. doi: 10.1080/10106049.2016.1195890

    CrossRef Google Scholar

    [6] SHI Z H, HUANG X D, AI L, et al. Quantitative analysis of factors controlling sediment yield in mountainous watersheds[J]. Geomorphology,2014,226:193 − 201. doi: 10.1016/j.geomorph.2014.08.012

    CrossRef Google Scholar

    [7] SORIA-JAUREGUI A, JIMENEZ-CANTIZANO F, ANTON L. Geomorphic and tectonic implications of the endorheic to exorheic transition of the Ebro River system in northeast Iberia[J]. Quaternary Research,2019,91(2):472 − 492. doi: 10.1017/qua.2018.87

    CrossRef Google Scholar

    [8] CHEN C Y, WANG Q. Debris flow-induced topographic changes: effects of recurrent debris flow initiation[J]. Environmental Monitoring and Assessment,2017,189(9):449. doi: 10.1007/s10661-017-6169-y

    CrossRef Google Scholar

    [9] CUI Y, CHENG D, CHAN D. Investigation of Post-Fire debris flows in montecito[J]. Isprs International Journal of Geo-Information,2019,8(1):5.

    Google Scholar

    [10] 黄江成, 欧国强, 潘华利. 白龙江与小江泥石流流域地貌演化比较分析[J]. 中国地质灾害与防治学报,2014,25(1):6 − 11. [HUANG Jiangcheng, OU Guoqiang, PAN Huali. Geomorphic evolution of comparison on debris flow gullies in Bailongjiang and Xiaojiang basins[J]. The Chinese Journal of Geological Hazard and Control,2014,25(1):6 − 11. (in Chinese with English abstract)

    Google Scholar

    [11] 国家防汛抗旱总指挥部办公室, 中国科学院水利部成都山地灾害与环境研究所. 山洪泥石流滑坡灾害及防治[M]. 北京: 科学出版社, 1994: 88-92.

    Google Scholar

    The Office of the State Flood Control and Drought Relief Headquarters, Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy. Landslide debris flow disasters and prevention[M]. Beijing: Science Press, 1994: 88-92. (in Chinese)

    Google Scholar

    [12] 王雷, 吴君平, 赵冰雪, 等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei, WU Junping, ZHAO Bingxue, et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)

    Google Scholar

    [13] 刘云, 康卉君. 江西崩塌滑坡泥石流灾害空间时间分布特征分析[J]. 中国地质灾害与防治学报,2020,31(4):107 − 112. [LIU Yun, KANG Huijun. Spatial-temporal distribution of landslide,rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):107 − 112. (in Chinese with English abstract)

    Google Scholar

    [14] 朱渊, 余斌, 亓星, 等. 地形条件对泥石流发育的影响—以岷江流域上游为例[J]. 吉林大学学报(地球科学版),2014,44(1):268 − 277. [ZHU Yuan, YU Bin, QI Xing, et al. Topographical factors in the formation of gully type debris flows in the upper reaches of Minjiang River[J]. Journal of Jilin University(Earth Science Edition),2014,44(1):268 − 277. (in Chinese with English abstract)

    Google Scholar

    [15] 刘德玉, 贾贵义, 李松, 等. 地形因素对白龙江流域甘肃段泥石流灾害的影响及权重分析[J]. 水文地质工程地质,2019,46(3):33 − 39. [LIU Deyu, JIA Guiyi, LI Song, et al. Impacts of topographical factors on debris flows and weight analysis at the Gansu segment of the Bailongjiang River Basin[J]. Hydrogeology & Engineering Geology,2019,46(3):33 − 39. (in Chinese with English abstract)

    Google Scholar

    [16] 黄成, 张友谊, 眭静, 等. 地形因子对沟谷泥石流发育的影响—以都汶高速“7.10”群发泥石流为例[J]. 人民长江,2019,50(8):115 − 119. [HUANG Cheng, ZHANG Youyi, SUI Jing, et al. Influence of topographic factors on valley debris flow development: case of “7.10” cluster debris flows in Duwen expressway[J]. Yangtze River,2019,50(8):115 − 119. (in Chinese with English abstract)

    Google Scholar

    [17] 曹晨, 余斌, 马二龙, 等. 四川汶川县佛堂坝沟“7·10”泥石流调查研究[J]. 泥沙研究,2019,44(1):38 − 43. [CAO Chen, YU Bin, MA Erlong, et al. Study on debris flow in Fongtuba gully after the earthquake at Wenchuan County of Sichuan Province[J]. Journal of Sediment Research,2019,44(1):38 − 43. (in Chinese with English abstract)

    Google Scholar

    [18] 孔应德, 郭晓军, 邹强, 等. 汶川县古溪沟“7·10”泥石流形成特征及防治工程的影响[J]. 山地学报,2014,32(3):320 − 326. [KONG Yingde, GUO Xiaojun, ZOU Qiang, et al. Giant debris flow hazards in Guxi gully, Wenchuan County of China on July 10, 2013[J]. Mountain Research,2014,32(3):320 − 326. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.03.009

    CrossRef Google Scholar

    [19] 严炎, 葛永刚, 张建强, 等. 四川省汶川县簇头沟“7·10”泥石流灾害成因与特征分析[J]. 灾害学,2014,29(3):229 − 234. [YAN Yan, GE Yonggang, ZHANG Jianqiang, et al. Research on the debris flow hazards in Cutou Gully, Wenchuan County on July 10, 2013[J]. Journal of Catastrophology,2014,29(3):229 − 234. (in Chinese with English abstract)

    Google Scholar

    [20] 邹强, 郭晓军, 朱兴华, 等. 岷江上游“7·10”泥石流对公路的危害方式及成因[J]. 山地学报,2014,32(6):747 − 753. [ZOU Qiang, GUO Xiaojun, ZHU Xinghua, et al. Hazard characteristics and causes of “7·10” debris flow along highways in the upper reaches of Minjiang river[J]. Mountain Research,2014,32(6):747 − 753. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.06.014

    CrossRef Google Scholar

    [21] 伍排勇, 张进春. 汶川干部群众积极自救互助自建—汶川抗击“7·10”特大山洪泥石流灾害纪实[N/OL]. 四川新闻网, 2013-07-15[2020-05-29]. http://scnews.newssc.org/system/2013/07/15/013811796.shtml.

    Google Scholar

    WU Paiyong, ZHANG Jinchun. Wenchuan cadres and the masses to actively self-help and mutual assistance self - Wenchuan fight against “7·10” large debris flow disaster documentary[N/OL]. NEWSSC, 2013-07-15[2020-5-29]. http://scnews.newssc.org/system/2013/07/15/013811796.shtml. (in Chinese)

    Google Scholar

    [22] 刘名洋. 汶川山洪泥石流灾害已致12人遇难, 26人失联[N/OL]. 新京报, 2019-8-23[2020-5-29]. http://www.bjnews.com.cn/news/2019/08/23/618811.html.

    Google Scholar

    LIU Mingyang. Wenchuan torrential debris flows have caused 12 people were killed and 26 people lost contact[N/OL]. The Beijing News, 2019-8-23[2020-5-29]. http://www.bjnews.com.cn/news/2019/08/23/618811.html.(in Chinese)

    Google Scholar

    [23] 刘名洋. 四川阿坝暴雨引发泥石流, 汶川等地多条道路中断[N/OL].新京报, 2019-8-20[2020-5-29]. http://www.bjnews.com.cn/news/2019/08/20/617164.html.

    Google Scholar

    LIU Mingyang. The Beijing News. Heavy rains triggered landslides in Sichuan Aba, Sichuan and other places a number of roads are cut off[N/OL]. The Beijing News, 2019-8-20[2020-5-29]. http://www.bjnews.com.cn/news/2019/08/20/617164.html.(in Chinese)

    Google Scholar

    [24] PIKE R J, WILSON S E. Elevation-relief ratio, hypsometric integral and geomorphic Area-Altitude analysis[J]. Geological Society of America Bulletin,1971,82(4):1079 − 1084. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2

    CrossRef Google Scholar

    [25] 常直杨, 王建, 白世彪, 等. 面积高程积分值计算方法的比较[J]. 干旱区资源与环境,2015,29(3):171 − 175. [CHANG Zhiyang, WANG Jian, BAI Shibiao, et al. Comparison of hypsometric integral methods[J]. Journal of Arid Land Resources and Environment,2015,29(3):171 − 175. (in Chinese with English abstract)

    Google Scholar

    [26] 王协康, 方铎. 白龙江流域泥石流沟形态非线性研究[J]. 人民长江,1999(5):19 − 21. [WANG Xiekang, FANG Duo. Nonlinear debris flow in Bailong river basin furrow[J]. Yangtze River,1999(5):19 − 21. (in Chinese with English abstract)

    Google Scholar

    [27] 李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)

    Google Scholar

    [28] 吕学军, 刘希林, 苏鹏程. 四川达曲河流域泥石流沟发育阶段的面积—高程分析[J]. 山地学报,2005,23(3):336 − 341. [LYU Xuejun, LIU Xilin, SU Pengcheng. The area-altitude analysis on the evolution stage of debris flow ravines:Taking Daqu river as an example[J]. Mountain Research,2005,23(3):336 − 341. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2005.03.013

    CrossRef Google Scholar

    [29] 蒋忠信. 滇西北三江河谷纵剖面的发育图式与演化规律[J]. 地理学报,1987,142(1):16 − 27. [JIANG Zhongxin. Model of development and rule of evolution of the longitudinal profiles of the valley of three rivers’ in the northwestern part of Yunnan Province[J]. Acta Geographica Sinica,1987,142(1):16 − 27. (in Chinese with English abstract) doi: 10.3321/j.issn:0375-5444.1987.01.002

    CrossRef Google Scholar

    [30] 赵岩, 孟兴民, 庆丰, 等. 基于地貌参数的泥石流沟发育阶段划分[J]. 灾害学,2018,33(4):48 − 52. [ZHAO Yan, MENG Xingmin, QING Feng, et al. Stage division of debris flow torrent based on geomorphologic parameter[J]. Journal of Catastrophology,2018,33(4):48 − 52. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2018.04.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(2652) PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint