Citation: | YANG Zhao, DONG Donglin, CHEN Yuqi, WANG Rong. Inversion of permeability coefficient based on adaptive differential hybrid butterfly particle algorithm[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 134-144. doi: 10.16030/j.cnki.issn.1000-3665.202412060 |
Accurate determination of aquifer hydrological parameters, such as permeability coefficient, is essential for effective mine water hazard prevention and control. However, traditional inversion methods such as the fitting curve method and graphical method exhibit shortcomings in computational speed and accuracy. To enhance the reliability of aquifer parameter inversion calculations, this study proposed a novel permeability coefficient inversion model, the adaptive differential hybrid butterfly particle algorithm (ADHBPA), specifically tailored to the characteristics of hydrogeological parameters. The model incorporates Latin hypercube sampling, a hyperbolic cosine adaptive function, differential mutation strategy, and dimension-wise variation strategy. The model effectively addressed the spatial heterogeneity and temporal dynamics inherent in hydrogeological parameter inversion, thereby improving the balance between global exploration and local exploitation. Using the pumping test data from 24 boreholes in the Banji mining area, the ADHBPA model achieved a maximum inversion error of 0.93 m and an average error rate of just 0.15%. In contrast, conventional algorithms produced average error rates ranging from 30% to 50%. These results highlight the algorithm's strong capability in avoiding local optima and performing high-precision parameter inversion, even under data-scarce conditions. The proposed algorithm provides efficient and reliable technical support for mine water hazard risk assessment and water control planning.
[1] | GUO Lidan,XIA Ziqiang,YU Lanlan,et al. Ecological significance of instream hydrological statistical parameters[J]. Journal of Hydrologic Engineering,2013,18(9):1088 − 1097. doi: 10.1061/(ASCE)HE.1943-5584.0000752 |
[2] | MOHAMMED M A A,FLORES Y G,SZABÓ N P,et al. Assessing heterogeneous groundwater systems:Geostatistical interpretation of well logging data for estimating essential hydrogeological parameters[J]. Scientific Reports,2024,14(1):7314. doi: 10.1038/s41598-024-57435-x |
[3] | LEWIS A Z. A method using drawdown derivatives to estimate aquifer properties near active groundwater production well fields[D]. Fort Collins:Colorado State University,2014. |
[4] | WU C M,YEH T C J,ZHU Junfeng,et al. Traditional analysis of aquifer tests:Comparing apples to oranges?[J]. Water Resources Research,2005,41(9):W09402. |
[5] | ZECH A,MÜLLER S,MAI J,et al. Extending theis' solution:Using transient pumping tests to estimate parameters of aquifer heterogeneity[J]. Water Resources Research,2016,52(8):6156 − 6170. doi: 10.1002/2015WR018509 |
[6] | VRUGT J A,STAUFFER P H,WÖHLING T,et al. Inverse modeling of subsurface flow and transport properties:A review with new developments[J]. Vadose Zone Journal,2008,7(2):843 − 864. doi: 10.2136/vzj2007.0078 |
[7] | LIU Shuqun,SUN Kun. Hand-painted curve fitting method based on NURBS curve[J]. Advanced Materials Research,2014,1049/1050:1385 − 1388. doi: 10.4028/www.scientific.net/AMR.1049-1050.1385 |
[8] | RAJESH M,KASHYAP D,HARI PRASAD K S. Estimation of unconfined aquifer parameters by genetic algorithms[J]. Hydrological Sciences Journal,2010,55(3):403 − 413. doi: 10.1080/02626661003738167 |
[9] | BATENI S M,MORTAZAVI-NAEINI M,ATAIE-ASHTIANI B,et al. Evaluation of methods for estimating aquifer hydraulic parameters[J]. Applied Soft Computing,2015,28:541 − 549. doi: 10.1016/j.asoc.2014.12.022 |
[10] | CUTHBERT M O. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations[J]. Water Resources Research,2010,46(9):W09515. |
[11] | SOUPIOS P M,KOULI M,VALLIANATOS F,et al. Estimation of aquifer hydraulic parameters from surficial geophysical methods:A case study of Keritis Basin in Chania (Crete–Greece)[J]. Journal of Hydrology,2007,338(1/2):122 − 131. |
[12] | GHORBANIDEHNO H,KOKKINAKI A,LEE J,et al. Recent developments in fast and scalable inverse modeling and data assimilation methods in hydrology[J]. Journal of Hydrology,2020,591:125266. doi: 10.1016/j.jhydrol.2020.125266 |
[13] | KARAHAN H,AYVAZ M T. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks[J]. Hydrogeology Journal,2008,16(5):817 − 827. doi: 10.1007/s10040-008-0279-0 |
[14] | MANISHA P J,RASTOGI A K,MOHAN B K. Critical review of applications of Artificial Neural Networks in groundwater hydrology[C]//Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Mumbai:International Association for Computer Methods and Advances in Geomechanics,2008:2463 − 2474. |
[15] | KARABOGA D,BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization,2007,39(3):459 − 471. doi: 10.1007/s10898-007-9149-x |
[16] | 张铃,张钹. 遗传算法机理的研究[J]. 软件学报,2000,11(7):945 − 952. [ZHANG Ling,ZHANG Bo. Research on the mechanism of genetic algorithms[J]. Journal of Software,2000,11(7):945 − 952. (in Chinese with English abstract)] ZHANG Ling, ZHANG Bo. Research on the mechanism of genetic algorithms[J]. Journal of Software, 2000, 11(7): 945 − 952. (in Chinese with English abstract) |
[17] | COELHO L D S,MARIANI V C. Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints[J]. Energy Conversion and Management,2007,48(5):1631 − 1639. doi: 10.1016/j.enconman.2006.11.007 |
[18] | SUN Zhe,WANG Yiwen,XIE Xiangpeng,et al. An event-triggered and dimension learning scheme WOA for PEMFC modeling and parameter identification[J]. Energy,2024,305:132352. doi: 10.1016/j.energy.2024.132352 |
[19] | MCDERMOTT J. When and why metaheuristics researchers can Ignore “No Free Lunch” theorems[J]. SN Computer Science,2020,1(1):60. doi: 10.1007/s42979-020-0063-3 |
[20] | GUO Rong,WANG Ran,YIN Juanjuan,et al. Fabrication and highly efficient dye removal characterization of Beta-Cyclodextrin-Based composite polymer fibers by electrospinning[J]. Nanomaterials,2019,9(1):127. doi: 10.3390/nano9010127 |
[21] | 高文欣,刘升,肖子雅,等. 收敛因子和黄金正弦指引机制的蝴蝶优化算法[J]. 计算机工程与设计,2020,41(12):3384 − 3389. [GAO Wenxin,LIU Sheng,XIAO Ziya,et al. Butterfly optimization algorithm based on convergence factor and Gold sinusoidal guidance mechanism[J]. Computer Engineering and Design,2020,41(12):3384 − 3389. (in Chinese with English abstract)] GAO Wenxin, LIU Sheng, XIAO Ziya, et al. Butterfly optimization algorithm based on convergence factor and Gold sinusoidal guidance mechanism[J]. Computer Engineering and Design, 2020, 41(12): 3384 − 3389. (in Chinese with English abstract) |
[22] | 彭茂松. 蝴蝶优化算法改进及应用研究[D]. 南宁:广西民族大学,2023. [PENG Maosong. Research on improvement and application of butterfly optimization algorithm[D]. Nanning:Guangxi Minzu University,2023. (in Chinese with English abstract)] PENG Maosong. Research on improvement and application of butterfly optimization algorithm[D]. Nanning: Guangxi Minzu University, 2023. (in Chinese with English abstract) |
[23] | 张孟健,汪敏,王霄,等. 混合粒子群-蝴蝶算法的WSN节点部署研究[J]. 计算机工程与科学,2022,44(6):1013 − 1022. [ZHANG Mengjian,WANG Min,WANG Xiao,et al. A hybrid particle swarm-butterfly algorithm for WSN node deployment[J]. Computer Engineering and Science,2022,44(6):1013 − 1022. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-130X.2022.06.008 ZHANG Mengjian, WANG Min, WANG Xiao, et al. A hybrid particle swarm-butterfly algorithm for WSN node deployment[J]. Computer Engineering and Science, 2022, 44(6): 1013 − 1022. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-130X.2022.06.008 |
[24] | 阚昕. 地下水污染评估方法及其在城市化进程中的应用研究[J]. 黑龙江环境通报,2024,37(9):90 − 92. [KAN Xin. Research on groundwater pollution assessment methods and their application in urbanization process[J]. Heilongjiang Environmental Journal,2024,37(9):90 − 92. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-263X.2024.09.029 KAN Xin. Research on groundwater pollution assessment methods and their application in urbanization process[J]. Heilongjiang Environmental Journal, 2024, 37(9): 90 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-263X.2024.09.029 |
[25] | SHI Y,EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Piscataway:IEEE,1998:69 − 73. |
[26] | YANG Xueming,YUAN Jinsha,YUAN Jiangye,et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation,2007,189(2):1205 − 1213. doi: 10.1016/j.amc.2006.12.045 |
[27] | KOCIS L,WHITEN W J. Computational investigations of low-discrepancy sequences[J]. ACM Transactions on Mathematical Software,1997,23(2):266 − 294. doi: 10.1145/264029.264064 |
[28] | 刘道华,陈良琼,胡秀云,等. 一种带停滞信息的自适应粒子群优化方法[J]. 西安电子科技大学学报,2016,43(3):120 − 124. [LIU Daohua,CHEN Liangqiong,HU Xiuyun,et al. Adaptive particle swarm optimization method with stagnancy information[J]. Journal of Xidian University,2016,43(3):120 − 124. (in Chinese with English abstract)] LIU Daohua, CHEN Liangqiong, HU Xiuyun, et al. Adaptive particle swarm optimization method with stagnancy information[J]. Journal of Xidian University, 2016, 43(3): 120 − 124. (in Chinese with English abstract) |
[29] | MITCHELL J K,HOOPER D R,CAMPENELLA R G. Permeability of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division,1965,91(4):41 − 65. doi: 10.1061/JSFEAQ.0000775 |
[30] | PANT M,ALI M,ABRAHAM A,et al. Mixed mutation strategy embedded differential evolution[C]//2009 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2009:1240 − 1246. |
[31] | PAN Zidong,LU Wenxi,WANG Han,et al. Fast inverse estimation of hydraulic conductivity field based on a deep convolutional-cycle generative adversarial neural network[J]. Journal of Hydrology,2022,613:128420. doi: 10.1016/j.jhydrol.2022.128420 |
[32] | ZHENG Na,JIANG Simin,XIA Xuemin,et al. Efficient estimation of groundwater contaminant source and hydraulic conductivity by an ILUES framework combining GAN and CNN[J]. Journal of Hydrology,2023,621:129677. doi: 10.1016/j.jhydrol.2023.129677 |
[33] | OSEI V,BAI Chunguang,ASANTE-DARKO D,et al. Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry[J]. Resources Policy,2023,86:104168. doi: 10.1016/j.resourpol.2023.104168 |
Structure outline of Banji Coal Mine
Initialization strategy particle distribution
Flow chart of ADHBPA
Comparison of classical inversion algorithm routes
Convergence curve
Box plot of test functions
Depth fitting
Convergence curve of actual hydrological function
Permeability coefficient distribution