2025 Vol. 52, No. 4
Article Contents

YANG Zhao, DONG Donglin, CHEN Yuqi, WANG Rong. Inversion of permeability coefficient based on adaptive differential hybrid butterfly particle algorithm[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 134-144. doi: 10.16030/j.cnki.issn.1000-3665.202412060
Citation: YANG Zhao, DONG Donglin, CHEN Yuqi, WANG Rong. Inversion of permeability coefficient based on adaptive differential hybrid butterfly particle algorithm[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 134-144. doi: 10.16030/j.cnki.issn.1000-3665.202412060

Inversion of permeability coefficient based on adaptive differential hybrid butterfly particle algorithm

More Information
  • Accurate determination of aquifer hydrological parameters, such as permeability coefficient, is essential for effective mine water hazard prevention and control. However, traditional inversion methods such as the fitting curve method and graphical method exhibit shortcomings in computational speed and accuracy. To enhance the reliability of aquifer parameter inversion calculations, this study proposed a novel permeability coefficient inversion model, the adaptive differential hybrid butterfly particle algorithm (ADHBPA), specifically tailored to the characteristics of hydrogeological parameters. The model incorporates Latin hypercube sampling, a hyperbolic cosine adaptive function, differential mutation strategy, and dimension-wise variation strategy. The model effectively addressed the spatial heterogeneity and temporal dynamics inherent in hydrogeological parameter inversion, thereby improving the balance between global exploration and local exploitation. Using the pumping test data from 24 boreholes in the Banji mining area, the ADHBPA model achieved a maximum inversion error of 0.93 m and an average error rate of just 0.15%. In contrast, conventional algorithms produced average error rates ranging from 30% to 50%. These results highlight the algorithm's strong capability in avoiding local optima and performing high-precision parameter inversion, even under data-scarce conditions. The proposed algorithm provides efficient and reliable technical support for mine water hazard risk assessment and water control planning.

  • 加载中
  • [1] GUO Lidan,XIA Ziqiang,YU Lanlan,et al. Ecological significance of instream hydrological statistical parameters[J]. Journal of Hydrologic Engineering,2013,18(9):1088 − 1097. doi: 10.1061/(ASCE)HE.1943-5584.0000752

    CrossRef Google Scholar

    [2] MOHAMMED M A A,FLORES Y G,SZABÓ N P,et al. Assessing heterogeneous groundwater systems:Geostatistical interpretation of well logging data for estimating essential hydrogeological parameters[J]. Scientific Reports,2024,14(1):7314. doi: 10.1038/s41598-024-57435-x

    CrossRef Google Scholar

    [3] LEWIS A Z. A method using drawdown derivatives to estimate aquifer properties near active groundwater production well fields[D]. Fort Collins:Colorado State University,2014.

    Google Scholar

    [4] WU C M,YEH T C J,ZHU Junfeng,et al. Traditional analysis of aquifer tests:Comparing apples to oranges?[J]. Water Resources Research,2005,41(9):W09402.

    Google Scholar

    [5] ZECH A,MÜLLER S,MAI J,et al. Extending theis' solution:Using transient pumping tests to estimate parameters of aquifer heterogeneity[J]. Water Resources Research,2016,52(8):6156 − 6170. doi: 10.1002/2015WR018509

    CrossRef Google Scholar

    [6] VRUGT J A,STAUFFER P H,WÖHLING T,et al. Inverse modeling of subsurface flow and transport properties:A review with new developments[J]. Vadose Zone Journal,2008,7(2):843 − 864. doi: 10.2136/vzj2007.0078

    CrossRef Google Scholar

    [7] LIU Shuqun,SUN Kun. Hand-painted curve fitting method based on NURBS curve[J]. Advanced Materials Research,2014,1049/1050:1385 − 1388. doi: 10.4028/www.scientific.net/AMR.1049-1050.1385

    CrossRef Google Scholar

    [8] RAJESH M,KASHYAP D,HARI PRASAD K S. Estimation of unconfined aquifer parameters by genetic algorithms[J]. Hydrological Sciences Journal,2010,55(3):403 − 413. doi: 10.1080/02626661003738167

    CrossRef Google Scholar

    [9] BATENI S M,MORTAZAVI-NAEINI M,ATAIE-ASHTIANI B,et al. Evaluation of methods for estimating aquifer hydraulic parameters[J]. Applied Soft Computing,2015,28:541 − 549. doi: 10.1016/j.asoc.2014.12.022

    CrossRef Google Scholar

    [10] CUTHBERT M O. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations[J]. Water Resources Research,2010,46(9):W09515.

    Google Scholar

    [11] SOUPIOS P M,KOULI M,VALLIANATOS F,et al. Estimation of aquifer hydraulic parameters from surficial geophysical methods:A case study of Keritis Basin in Chania (Crete–Greece)[J]. Journal of Hydrology,2007,338(1/2):122 − 131.

    Google Scholar

    [12] GHORBANIDEHNO H,KOKKINAKI A,LEE J,et al. Recent developments in fast and scalable inverse modeling and data assimilation methods in hydrology[J]. Journal of Hydrology,2020,591:125266. doi: 10.1016/j.jhydrol.2020.125266

    CrossRef Google Scholar

    [13] KARAHAN H,AYVAZ M T. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks[J]. Hydrogeology Journal,2008,16(5):817 − 827. doi: 10.1007/s10040-008-0279-0

    CrossRef Google Scholar

    [14] MANISHA P J,RASTOGI A K,MOHAN B K. Critical review of applications of Artificial Neural Networks in groundwater hydrology[C]//Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Mumbai:International Association for Computer Methods and Advances in Geomechanics,2008:2463 − 2474.

    Google Scholar

    [15] KARABOGA D,BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization,2007,39(3):459 − 471. doi: 10.1007/s10898-007-9149-x

    CrossRef Google Scholar

    [16] 张铃,张钹. 遗传算法机理的研究[J]. 软件学报,2000,11(7):945 − 952. [ZHANG Ling,ZHANG Bo. Research on the mechanism of genetic algorithms[J]. Journal of Software,2000,11(7):945 − 952. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Ling, ZHANG Bo. Research on the mechanism of genetic algorithms[J]. Journal of Software, 2000, 11(7): 945 − 952. (in Chinese with English abstract)

    Google Scholar

    [17] COELHO L D S,MARIANI V C. Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints[J]. Energy Conversion and Management,2007,48(5):1631 − 1639. doi: 10.1016/j.enconman.2006.11.007

    CrossRef Google Scholar

    [18] SUN Zhe,WANG Yiwen,XIE Xiangpeng,et al. An event-triggered and dimension learning scheme WOA for PEMFC modeling and parameter identification[J]. Energy,2024,305:132352. doi: 10.1016/j.energy.2024.132352

    CrossRef Google Scholar

    [19] MCDERMOTT J. When and why metaheuristics researchers can Ignore “No Free Lunch” theorems[J]. SN Computer Science,2020,1(1):60. doi: 10.1007/s42979-020-0063-3

    CrossRef Google Scholar

    [20] GUO Rong,WANG Ran,YIN Juanjuan,et al. Fabrication and highly efficient dye removal characterization of Beta-Cyclodextrin-Based composite polymer fibers by electrospinning[J]. Nanomaterials,2019,9(1):127. doi: 10.3390/nano9010127

    CrossRef Google Scholar

    [21] 高文欣,刘升,肖子雅,等. 收敛因子和黄金正弦指引机制的蝴蝶优化算法[J]. 计算机工程与设计,2020,41(12):3384 − 3389. [GAO Wenxin,LIU Sheng,XIAO Ziya,et al. Butterfly optimization algorithm based on convergence factor and Gold sinusoidal guidance mechanism[J]. Computer Engineering and Design,2020,41(12):3384 − 3389. (in Chinese with English abstract)]

    Google Scholar

    GAO Wenxin, LIU Sheng, XIAO Ziya, et al. Butterfly optimization algorithm based on convergence factor and Gold sinusoidal guidance mechanism[J]. Computer Engineering and Design, 2020, 41(12): 3384 − 3389. (in Chinese with English abstract)

    Google Scholar

    [22] 彭茂松. 蝴蝶优化算法改进及应用研究[D]. 南宁:广西民族大学,2023. [PENG Maosong. Research on improvement and application of butterfly optimization algorithm[D]. Nanning:Guangxi Minzu University,2023. (in Chinese with English abstract)]

    Google Scholar

    PENG Maosong. Research on improvement and application of butterfly optimization algorithm[D]. Nanning: Guangxi Minzu University, 2023. (in Chinese with English abstract)

    Google Scholar

    [23] 张孟健,汪敏,王霄,等. 混合粒子群-蝴蝶算法的WSN节点部署研究[J]. 计算机工程与科学,2022,44(6):1013 − 1022. [ZHANG Mengjian,WANG Min,WANG Xiao,et al. A hybrid particle swarm-butterfly algorithm for WSN node deployment[J]. Computer Engineering and Science,2022,44(6):1013 − 1022. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-130X.2022.06.008

    CrossRef Google Scholar

    ZHANG Mengjian, WANG Min, WANG Xiao, et al. A hybrid particle swarm-butterfly algorithm for WSN node deployment[J]. Computer Engineering and Science, 2022, 44(6): 1013 − 1022. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-130X.2022.06.008

    CrossRef Google Scholar

    [24] 阚昕. 地下水污染评估方法及其在城市化进程中的应用研究[J]. 黑龙江环境通报,2024,37(9):90 − 92. [KAN Xin. Research on groundwater pollution assessment methods and their application in urbanization process[J]. Heilongjiang Environmental Journal,2024,37(9):90 − 92. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-263X.2024.09.029

    CrossRef Google Scholar

    KAN Xin. Research on groundwater pollution assessment methods and their application in urbanization process[J]. Heilongjiang Environmental Journal, 2024, 37(9): 90 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-263X.2024.09.029

    CrossRef Google Scholar

    [25] SHI Y,EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Piscataway:IEEE,1998:69 − 73.

    Google Scholar

    [26] YANG Xueming,YUAN Jinsha,YUAN Jiangye,et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation,2007,189(2):1205 − 1213. doi: 10.1016/j.amc.2006.12.045

    CrossRef Google Scholar

    [27] KOCIS L,WHITEN W J. Computational investigations of low-discrepancy sequences[J]. ACM Transactions on Mathematical Software,1997,23(2):266 − 294. doi: 10.1145/264029.264064

    CrossRef Google Scholar

    [28] 刘道华,陈良琼,胡秀云,等. 一种带停滞信息的自适应粒子群优化方法[J]. 西安电子科技大学学报,2016,43(3):120 − 124. [LIU Daohua,CHEN Liangqiong,HU Xiuyun,et al. Adaptive particle swarm optimization method with stagnancy information[J]. Journal of Xidian University,2016,43(3):120 − 124. (in Chinese with English abstract)]

    Google Scholar

    LIU Daohua, CHEN Liangqiong, HU Xiuyun, et al. Adaptive particle swarm optimization method with stagnancy information[J]. Journal of Xidian University, 2016, 43(3): 120 − 124. (in Chinese with English abstract)

    Google Scholar

    [29] MITCHELL J K,HOOPER D R,CAMPENELLA R G. Permeability of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division,1965,91(4):41 − 65. doi: 10.1061/JSFEAQ.0000775

    CrossRef Google Scholar

    [30] PANT M,ALI M,ABRAHAM A,et al. Mixed mutation strategy embedded differential evolution[C]//2009 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2009:1240 − 1246.

    Google Scholar

    [31] PAN Zidong,LU Wenxi,WANG Han,et al. Fast inverse estimation of hydraulic conductivity field based on a deep convolutional-cycle generative adversarial neural network[J]. Journal of Hydrology,2022,613:128420. doi: 10.1016/j.jhydrol.2022.128420

    CrossRef Google Scholar

    [32] ZHENG Na,JIANG Simin,XIA Xuemin,et al. Efficient estimation of groundwater contaminant source and hydraulic conductivity by an ILUES framework combining GAN and CNN[J]. Journal of Hydrology,2023,621:129677. doi: 10.1016/j.jhydrol.2023.129677

    CrossRef Google Scholar

    [33] OSEI V,BAI Chunguang,ASANTE-DARKO D,et al. Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry[J]. Resources Policy,2023,86:104168. doi: 10.1016/j.resourpol.2023.104168

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(70) PDF downloads(31) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint