[1]
|
DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10): 4967 − 4983.
Google Scholar
|
[2]
|
冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(2): 436 − 457.
Google Scholar
FENG Xinbin, QIU Guangle, FU Xuewu, et al. Mercury pollution in the environment[J]. Progress in Chemistry, 2009, 21(2): 436 − 457. (in Chinese with English abstract)
Google Scholar
|
[3]
|
ANDREA C, STEFANO C, ANDREA E, et al. Mercury in the unconfined aquifer of the Isonzo/Soča River alluvial plain downstream from the Idrija mining area[J]. Chemosphere, 2018, 195: 749 − 761. doi: 10.1016/j.chemosphere.2017.12.105
CrossRef Google Scholar
|
[4]
|
DADOVÁ J, ANDRÁŠ P, KUPKA J, et al. Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia)[J]. Environmental science and pollution research international, 2016, 23(3): 2914 − 2927. doi: 10.1007/s11356-015-5527-y
CrossRef Google Scholar
|
[5]
|
GONZÁLEZ-FERNÁNDEZ B, MENÉNDEZ-CASARES E, MELÉNDEZ-ASENSIO M, et al. Sources of mercury in groundwater and soils of West Gijón (Asturias, NW Spain)[J]. Science of the Total Environment, 2014, 481: 217 − 231. doi: 10.1016/j.scitotenv.2014.02.034
CrossRef Google Scholar
|
[6]
|
曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018, 8(2): 221 − 230. doi: 10.3969/j.issn.1674-991X.2018.02.030
CrossRef Google Scholar
ZENG Chen, GUO Shaojuan, YANG Lixin. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology, 2018, 8(2): 221 − 230. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-991X.2018.02.030
CrossRef Google Scholar
|
[7]
|
BARRINGER J L, SZABO Z, REILLY P A, et al. Variable contributions of mercury from groundwater to a First-Order urban coastal plain stream in New Jersey, USA[J]. Water, Air, & Soil Pollution, 2013, 224(4): 1475.
Google Scholar
|
[8]
|
邱文杰, 宋健, 吴剑锋, 等. 污染场地地下水中汞污染反应运移模拟[J]. 环境科学学报, 2020, 40(7): 2502 − 2510.
Google Scholar
QIU Wenjie, SONG Jian, WU Jianfeng, et al. Reactive transport modeling of mercury species in the groundwater of a contaminated site[J]. Acta scientiae circumstantiae, 2020, 40(7): 2502 − 2510. (in Chinese with English abstract)
Google Scholar
|
[9]
|
BARRINGER J L, SZABO Z, SCHNEIDER D, et al. mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain[J]. Science of the Total Environment, 2006, 361(1/2/3): 144 − 162.
Google Scholar
|
[10]
|
CALDER R S D, SCHARTUP A T, LI Miling, et al. Future impacts of hydroelectric power development on methylmercury exposures of Canadian indigenous communities[J]. Environmental Science & Technology, 2016, 50(23): 13115 − 13122.
Google Scholar
|
[11]
|
SUN Hongbing, ALEXANDER J, GOVE B, et al. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application[J]. Journal of Contaminant Hydrology, 2015, 180: 12 − 24. doi: 10.1016/j.jconhyd.2015.07.002
CrossRef Google Scholar
|
[12]
|
World Health Organization. Guideline for drinking-water quality[M]. Geneva: World Health Organization, 2011.
Google Scholar
|
[13]
|
CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 36(8): 609 − 662. doi: 10.1080/10408440600845619
CrossRef Google Scholar
|
[14]
|
BOLLEN A, WENKE A, BIESTER H. mercury speciation analyses in HgCl2-contaminated soils and groundwater--implications for risk assessment and remediation strategies[J]. Water Research, 2008, 42(1/2): 91 − 100.
Google Scholar
|
[15]
|
HAITZER M, AIKEN G R, RYAN J N. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances[J]. Environmental Science & Technology, 2003, 37(11): 2436 − 2441.
Google Scholar
|
[16]
|
RICHARD J H, BISCHOFF C, BIESTER H. Comparing modeled and measured mercury speciation in contaminated groundwater: Importance of dissolved organic matter composition[J]. Environmental Science & Technology, 2016, 50(14): 7508 − 7516.
Google Scholar
|
[17]
|
WANG Jianxu, FENG Xinbin, ANDERSON C W N, et al. Remediation of mercury contaminated sites - A review[J]. Journal of Hazardous Materials, 2012, 221/222: 1 − 18. doi: 10.1016/j.jhazmat.2012.04.035
CrossRef Google Scholar
|
[18]
|
戈芳, 曹瑞国, 朱斌, 等. 检测痕量Hg2+的DNA电化学生物传感器[J]. 物理化学学报, 2010, 26(7): 1779 − 1783. doi: 10.3866/PKU.WHXB20100736
CrossRef Google Scholar
GE Fang, CAO Ruiguo, ZHU Bin, et al. DNA electrochemical biosensor for trace Hg2+ detection[J]. Acta Physico-Chimica Sinica, 2010, 26(7): 1779 − 1783. (in Chinese with English abstract) doi: 10.3866/PKU.WHXB20100736
CrossRef Google Scholar
|
[19]
|
JIA Xiaoyu, HAN Yi, LIU Xinli, et al. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic spectroscopy, 2011, 66(1): 88 − 92. doi: 10.1016/j.sab.2010.12.003
CrossRef Google Scholar
|
[20]
|
王成, 高倩, 张凌恺, 等. 基于专利分析的生物传感器发展态势研究[J]. 中国生物工程杂志, 2022, 42(9): 124 − 132.
Google Scholar
WANG Cheng, GAO Qian, ZHANG Lingkai, et al. Development trend of biosensors based on patent analysis[J]. China Biotechnology, 2022, 42(9): 124 − 132. (in Chinese with English abstract)
Google Scholar
|
[21]
|
YU Liping, YAN Xiuping. Factors affecting the stability of inorganic and methylmercury during sample storage[J]. TrAC Trends in Analytical Chemistry, 2003, 22(4): 245 − 253. doi: 10.1016/S0165-9936(03)00407-2
CrossRef Google Scholar
|
[22]
|
马莉萍, 李云霞, 聂莹莹, 等. 基于功能核酸的生物传感器对水体中Hg2+的高灵敏检测[J]. 中国生物工程杂志, 2023, 43(7): 53 − 59.
Google Scholar
MA Liping, LI Yunxia, NIE Yingying, et al. Oligonucleotide-based biosenser for highly sensitive detection of Hg2+ in aqueous solution[J]. China Biotechnology, 2023, 43(7): 53 − 59. (in Chinese with English abstract)
Google Scholar
|
[23]
|
DAVE N, CHAN M Y, HUANG P J J, et al. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water[J]. Journal of the American Chemical Society, 2010, 132(36): 12668 − 12673. doi: 10.1021/ja106098j
CrossRef Google Scholar
|
[24]
|
GUPTA S, SARKAR S, KATRANIDIS A, et al. Development of a cell-free optical biosensor for detection of a broad range of mercury contaminants in water: A plasmid DNA-based approach[J]. ACS Omega, 2019, 4(5): 9480 − 9487. doi: 10.1021/acsomega.9b00205
CrossRef Google Scholar
|
[25]
|
XIA Ni, FENG Fan, LIU Cheng, et al. The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer[J]. Talanta, 2019, 192: 500 − 507. doi: 10.1016/j.talanta.2018.08.086
CrossRef Google Scholar
|
[26]
|
JOSEPH K A, DAVE N, LIU Juewen. Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg2+ detection[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 733 − 739.
Google Scholar
|
[27]
|
ZHOU Wenhu, DING Jinsong, LIU Juewen. 2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver[J]. Biosensors and Bioelectronics, 2017, 87: 171 − 177. doi: 10.1016/j.bios.2016.08.033
CrossRef Google Scholar
|
[28]
|
PI Kunfu, LIU Juewen, VAN CAPPELLEN P. A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition[J]. Journal of Hazardous Materials, 2020, 385: 121572. doi: 10.1016/j.jhazmat.2019.121572
CrossRef Google Scholar
|
[29]
|
PI Kunfu, LIU Juewen, VAN CAPPELLEN P. Direct measurement of aqueous mercury(II): Combining DNA-based sensing with diffusive gradients in thin films[J]. Environmental Science & Technology, 2020, 54(21): 13680 − 13689.
Google Scholar
|
[30]
|
CHAPRA S C, DOVE A, WARREN G J. Long-term trends of Great Lakes major ion chemistry[J]. Journal of Great Lakes Research, 2012, 38(3): 550 − 560. doi: 10.1016/j.jglr.2012.06.010
CrossRef Google Scholar
|
[31]
|
ROTT E, DUTHIE H C, PIPP E. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(6): 1443 − 1453. doi: 10.1139/f98-038
CrossRef Google Scholar
|
[32]
|
JYRKAMA M I, SYKES J F. The impact of climate change on spatially varying groundwater recharge in the Grand River Watershed (Ontario)[J]. Journal of Hydrology, 2007, 338(3/4): 237 − 250.
Google Scholar
|
[33]
|
PRIEBE E H, FRAPE S K, JACKSON R E, et al. Tracing recharge and groundwater evolution in a glaciated, regional-scale carbonate bedrock aquifer system, southern Ontario, Canada[J]. Applied Geochemistry, 2021, 124: 104794. doi: 10.1016/j.apgeochem.2020.104794
CrossRef Google Scholar
|
[34]
|
EASTON R M, CARTER T R. Extension of grenville basement beneath southwestern Ontario, rock types and tectonic subdivisions[R]. OFM0162. Ontario Geological Survey, 1991.
Google Scholar
|
[35]
|
MIYAKE Y, TOGASHI H, TASHIRO M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes[J]. Journal of the American Chemical Society, 2006, 128(7): 2172 − 2173. doi: 10.1021/ja056354d
CrossRef Google Scholar
|
[36]
|
DAVISON W, ZHANG Hao. Progress in understanding the use of diffusive gradients in thin films (DGT)-back to basics[J]. Environmental Chemistry, 2012, 9(1): 1 − 13. doi: 10.1071/EN11084
CrossRef Google Scholar
|
[37]
|
PI Kunfu, XIE Xianjun, MA Teng, et al. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation[J]. Water Research, 2020, 181: 115859. doi: 10.1016/j.watres.2020.115859
CrossRef Google Scholar
|
[38]
|
VIOLLIER E, INGLETT P W, HUNTER K, et al. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters[J]. Applied Geochemistry, 2000, 15(6): 785 − 790. doi: 10.1016/S0883-2927(99)00097-9
CrossRef Google Scholar
|
[39]
|
CLINE J D. Spectrophotometric determination of Hydrogen sulfide in natural waters[J]. Limnology and Oceanography, 1969, 14(3): 454 − 458. doi: 10.4319/lo.1969.14.3.0454
CrossRef Google Scholar
|
[40]
|
NESSLER J. Colorimetric determination of ammonia by Nessler reagent[J]. Chemisches Zentralblatt, 1856, 27: 529 − 541.
Google Scholar
|
[41]
|
EPA. Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry[R]. EPA-821-R-02-019, 2002.
Google Scholar
|
[42]
|
PARKHURST D L, APPELO C. Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[Z]. 2013.
Google Scholar
|
[43]
|
DI NATALE F, ERTO A, LANCIA A, et al. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides[J]. Journal of Hazardous Materials, 2011, 192(3): 1842 − 1850. doi: 10.1016/j.jhazmat.2011.07.021
CrossRef Google Scholar
|
[44]
|
TIPPING E, LOFTS S, SONKE J. Humic Ion-Binding model VII: A revised parameterisation of cation-binding by humic substances[J]. Environmental Chemistry, 2011, 8(3): 225 − 235. doi: 10.1071/EN11016
CrossRef Google Scholar
|
[45]
|
FERNÁNDEZ-GÓMEZ C, DIMOCK B, HINTELMANN H, et al. Development of the DGT technique for Hg measurement in water: Comparison of three different types of samplers in laboratory assays[J]. Chemosphere, 2011, 85(9): 1452 − 1457. doi: 10.1016/j.chemosphere.2011.07.080
CrossRef Google Scholar
|
[46]
|
HONG Y S, RIFKIN E, BOUWER E J. Combination of diffusive gradient in a thin film probe and IC-ICP-MS for the simultaneous determination of CH3Hg+ and Hg2+ in oxic water[J]. Environmental Science & Technology, 2011, 45(15): 6429 − 6436.
Google Scholar
|
[47]
|
ZHANG H, DAVISON W. Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films[J]. Analytical Chemistry, 2000, 72(18): 4447 − 4457. doi: 10.1021/ac0004097
CrossRef Google Scholar
|
[48]
|
DOČEKALOVÁ H, DIVIŠ P. Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems[J]. Talanta, 2005, 65(5): 1174 − 1178. doi: 10.1016/j.talanta.2004.08.054
CrossRef Google Scholar
|
[49]
|
PELCOVÁ P, DOČEKALOVÁ H, KLECKEROVÁ A. Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters[J]. Analytica Chimica Acta, 2014, 819: 42 − 48. doi: 10.1016/j.aca.2014.02.013
CrossRef Google Scholar
|
[50]
|
MILLER C L, SOUTHWORTH G, BROOKS S, et al. Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment[J]. Environmental Science & Technology, 2009, 43(22): 8548 − 8553.
Google Scholar
|
[51]
|
TIPPING E, LOFTS S, HOOPER H, et al. Critical limits for Hg(II) in soils, derived from chronic toxicity data[J]. Environmental Pollution, 2010, 158(7): 2465 − 2471. doi: 10.1016/j.envpol.2010.03.027
CrossRef Google Scholar
|
[52]
|
LOREDO J, LUQUE C, IGLESIAS J G. Conditions of formation of mercury deposits from the Cantabrian zone (Spain)[J]. Bulletin de Minéralogie, 1988, 111(3/4): 393 − 400.
Google Scholar
|
[53]
|
GRASSI S, NETTI R. Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy)[J]. Journal of Hydrology, 2000, 237(3/4): 198 − 211.
Google Scholar
|
[54]
|
LU X, JAFFE R. Interaction between Hg(II) and natural dissolved organic matter: A fluorescence spectroscopy based study[J]. Water Research, 2001, 35(7): 1793 − 1803. doi: 10.1016/S0043-1354(00)00423-1
CrossRef Google Scholar
|
[55]
|
SCHAEFER M V, YING S C, BENNER S G, et al. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J]. Environmental Science & Technology, 2016, 50(7): 3521 − 3529.
Google Scholar
|