2025 Vol. 52, No. 2
Article Contents

PI Kunfu, WANG Yanxin, LIU Juewen, YANG Ya’nan, PHILIPPE Van Cappellen. Speciation and mobilization of ultra-trace Hg(II) in groundwater[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 1-13. doi: 10.16030/j.cnki.issn.1000-3665.202410014
Citation: PI Kunfu, WANG Yanxin, LIU Juewen, YANG Ya’nan, PHILIPPE Van Cappellen. Speciation and mobilization of ultra-trace Hg(II) in groundwater[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 1-13. doi: 10.16030/j.cnki.issn.1000-3665.202410014

Speciation and mobilization of ultra-trace Hg(II) in groundwater

More Information
  • Author Bio: 皮坤福,中国地质大学(武汉)教授,博士生导师,入选“地大百人”海外引进高层次人才。主要研究方向为生源微量元素水文生物地球化学和水土污染与防治,构建了水土环境典型生源微量元素“来源解析-过程识别-原位管控”的系统性研究架构。  近年主持加拿大自然科学与工程研究委员会博士后项目、战略合作项目课题,国家自然科学基金委青年科学基金项目、重点项目课题,国家重点研发计划项目子课题等科研项目,在 Annual Review of Environment and Resources、Environmental Science & Technology、Water Research、Environment International、Journal of Hydrology、Earth-Science Reviews、Trends in Analytical Chemistry、Geochimica et Cosmochimica Acta等发表SCI收录论文40余篇,获授权国家发明专利4项,获自然资源科技进步奖一等奖1项。现任中国矿物岩石地球化学学会水文地球化学专业委员会委员、中国水利学会地下水科学与工程专业委员会委员和《安全与环境工程》青年编委
  • Accurate quantification of various mercury (Hg) species dynamics in groundwater is critical for understanding Hg mobilization, fate, and consequent impacts on water ecological security. This foundational work, however, faces challenges due to the lack of highly sensitive, reliable, and field-deployable detection technologies that can determine and monitor ultra-trace Hg(II) in groundwater. Here, this research presents and assesses two types of biosensing methods for dissolved Hg(II) based on a deoxyribonucleic acid (DNA) sensing material: the DNA-functionalized hydrogel for direct Hg(II) detection in groundwater and the DNA-DGT sensor for simultaneous sampling and detection with the diffusive gradients in thin films technique (DGT). Applying tests to hydrogeochemically diverse groundwaters from the Grand River Watershed, Canada, the results indicate that the DNA-functionalized hydrogel is able to quickly detect dissolved Hg(II) but inapplicable to low Hg(II) concentrations (<1.60 μg/L), whereas the DNA-DGT sensor can capture variably ultra-trace Hg(II) species depending on the deployment time. Quantification of Hg(II) species in groundwater via joint DNA-DGT sensing and hydrogeochemical calculation indicates that temperature, pH, Cl, and dissolved organic matter significantly affected partitioning of trace Hg(II) between various mobile species, diffusion efficiency, and thus its mobility. Combined with hydrogeochemical modeling, the DNA-DGT measurements reveal that mobilization and transformation of Hg(II) are linked to redox cycling of sulfur in groundwater. This study therefore highlights that monitoring of low-level Hg(II) with ultra-sensitive, field-deployable biosensing methods is of significance to understanding mobility and fate of Hg in groundwater and its threat to safe drinking water supply.

  • 加载中
  • [1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 4710): 49674983.

    Google Scholar

    [2] 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 212): 436457.

    Google Scholar

    FENG Xinbin, QIU Guangle, FU Xuewu, et al. Mercury pollution in the environment[J]. Progress in Chemistry, 2009, 212): 436457. (in Chinese with English abstract)

    Google Scholar

    [3] ANDREA C, STEFANO C, ANDREA E, et al. Mercury in the unconfined aquifer of the Isonzo/Soča River alluvial plain downstream from the Idrija mining area[J]. Chemosphere, 2018, 195: 749761. doi: 10.1016/j.chemosphere.2017.12.105

    CrossRef Google Scholar

    [4] DADOVÁ J, ANDRÁŠ P, KUPKA J, et al. Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia)[J]. Environmental science and pollution research international, 2016, 233): 29142927. doi: 10.1007/s11356-015-5527-y

    CrossRef Google Scholar

    [5] GONZÁLEZ-FERNÁNDEZ B, MENÉNDEZ-CASARES E, MELÉNDEZ-ASENSIO M, et al. Sources of mercury in groundwater and soils of West Gijón (Asturias, NW Spain)[J]. Science of the Total Environment, 2014, 481: 217231. doi: 10.1016/j.scitotenv.2014.02.034

    CrossRef Google Scholar

    [6] 曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018, 82): 221230. doi: 10.3969/j.issn.1674-991X.2018.02.030

    CrossRef Google Scholar

    ZENG Chen, GUO Shaojuan, YANG Lixin. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology, 2018, 82): 221230. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-991X.2018.02.030

    CrossRef Google Scholar

    [7] BARRINGER J L, SZABO Z, REILLY P A, et al. Variable contributions of mercury from groundwater to a First-Order urban coastal plain stream in New Jersey, USA[J]. Water, Air, & Soil Pollution, 2013, 224(4): 1475.

    Google Scholar

    [8] 邱文杰, 宋健, 吴剑锋, 等. 污染场地地下水中汞污染反应运移模拟[J]. 环境科学学报, 2020, 407): 25022510.

    Google Scholar

    QIU Wenjie, SONG Jian, WU Jianfeng, et al. Reactive transport modeling of mercury species in the groundwater of a contaminated site[J]. Acta scientiae circumstantiae, 2020, 407): 25022510. (in Chinese with English abstract)

    Google Scholar

    [9] BARRINGER J L, SZABO Z, SCHNEIDER D, et al. mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain[J]. Science of the Total Environment, 2006, 3611/2/3): 144162.

    Google Scholar

    [10] CALDER R S D, SCHARTUP A T, LI Miling, et al. Future impacts of hydroelectric power development on methylmercury exposures of Canadian indigenous communities[J]. Environmental Science & Technology, 2016, 5023): 1311513122.

    Google Scholar

    [11] SUN Hongbing, ALEXANDER J, GOVE B, et al. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application[J]. Journal of Contaminant Hydrology, 2015, 180: 1224. doi: 10.1016/j.jconhyd.2015.07.002

    CrossRef Google Scholar

    [12] World Health Organization. Guideline for drinking-water quality[M]. Geneva: World Health Organization, 2011.

    Google Scholar

    [13] CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 368): 609662. doi: 10.1080/10408440600845619

    CrossRef Google Scholar

    [14] BOLLEN A, WENKE A, BIESTER H. mercury speciation analyses in HgCl2-contaminated soils and groundwater--implications for risk assessment and remediation strategies[J]. Water Research, 2008, 42(1/2): 91 − 100.

    Google Scholar

    [15] HAITZER M, AIKEN G R, RYAN J N. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances[J]. Environmental Science & Technology, 2003, 3711): 24362441.

    Google Scholar

    [16] RICHARD J H, BISCHOFF C, BIESTER H. Comparing modeled and measured mercury speciation in contaminated groundwater: Importance of dissolved organic matter composition[J]. Environmental Science & Technology, 2016, 5014): 75087516.

    Google Scholar

    [17] WANG Jianxu, FENG Xinbin, ANDERSON C W N, et al. Remediation of mercury contaminated sites - A review[J]. Journal of Hazardous Materials, 2012, 221/222: 118. doi: 10.1016/j.jhazmat.2012.04.035

    CrossRef Google Scholar

    [18] 戈芳, 曹瑞国, 朱斌, 等. 检测痕量Hg2+的DNA电化学生物传感器[J]. 物理化学学报, 2010, 267): 17791783. doi: 10.3866/PKU.WHXB20100736

    CrossRef Google Scholar

    GE Fang, CAO Ruiguo, ZHU Bin, et al. DNA electrochemical biosensor for trace Hg2+ detection[J]. Acta Physico-Chimica Sinica, 2010, 267): 17791783. (in Chinese with English abstract) doi: 10.3866/PKU.WHXB20100736

    CrossRef Google Scholar

    [19] JIA Xiaoyu, HAN Yi, LIU Xinli, et al. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic spectroscopy, 2011, 661): 8892. doi: 10.1016/j.sab.2010.12.003

    CrossRef Google Scholar

    [20] 王成, 高倩, 张凌恺, 等. 基于专利分析的生物传感器发展态势研究[J]. 中国生物工程杂志, 2022, 429): 124132.

    Google Scholar

    WANG Cheng, GAO Qian, ZHANG Lingkai, et al. Development trend of biosensors based on patent analysis[J]. China Biotechnology, 2022, 429): 124132. (in Chinese with English abstract)

    Google Scholar

    [21] YU Liping, YAN Xiuping. Factors affecting the stability of inorganic and methylmercury during sample storage[J]. TrAC Trends in Analytical Chemistry, 2003, 224): 245253. doi: 10.1016/S0165-9936(03)00407-2

    CrossRef Google Scholar

    [22] 马莉萍, 李云霞, 聂莹莹, 等. 基于功能核酸的生物传感器对水体中Hg2+的高灵敏检测[J]. 中国生物工程杂志, 2023, 437): 5359.

    Google Scholar

    MA Liping, LI Yunxia, NIE Yingying, et al. Oligonucleotide-based biosenser for highly sensitive detection of Hg2+ in aqueous solution[J]. China Biotechnology, 2023, 437): 5359. (in Chinese with English abstract)

    Google Scholar

    [23] DAVE N, CHAN M Y, HUANG P J J, et al. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water[J]. Journal of the American Chemical Society, 2010, 13236): 1266812673. doi: 10.1021/ja106098j

    CrossRef Google Scholar

    [24] GUPTA S, SARKAR S, KATRANIDIS A, et al. Development of a cell-free optical biosensor for detection of a broad range of mercury contaminants in water: A plasmid DNA-based approach[J]. ACS Omega, 2019, 45): 94809487. doi: 10.1021/acsomega.9b00205

    CrossRef Google Scholar

    [25] XIA Ni, FENG Fan, LIU Cheng, et al. The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer[J]. Talanta, 2019, 192: 500507. doi: 10.1016/j.talanta.2018.08.086

    CrossRef Google Scholar

    [26] JOSEPH K A, DAVE N, LIU Juewen. Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg2+ detection[J]. ACS Applied Materials & Interfaces, 2011, 33): 733739.

    Google Scholar

    [27] ZHOU Wenhu, DING Jinsong, LIU Juewen. 2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver[J]. Biosensors and Bioelectronics, 2017, 87: 171177. doi: 10.1016/j.bios.2016.08.033

    CrossRef Google Scholar

    [28] PI Kunfu, LIU Juewen, VAN CAPPELLEN P. A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition[J]. Journal of Hazardous Materials, 2020, 385: 121572. doi: 10.1016/j.jhazmat.2019.121572

    CrossRef Google Scholar

    [29] PI Kunfu, LIU Juewen, VAN CAPPELLEN P. Direct measurement of aqueous mercury(II): Combining DNA-based sensing with diffusive gradients in thin films[J]. Environmental Science & Technology, 2020, 5421): 1368013689.

    Google Scholar

    [30] CHAPRA S C, DOVE A, WARREN G J. Long-term trends of Great Lakes major ion chemistry[J]. Journal of Great Lakes Research, 2012, 383): 550560. doi: 10.1016/j.jglr.2012.06.010

    CrossRef Google Scholar

    [31] ROTT E, DUTHIE H C, PIPP E. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 556): 14431453. doi: 10.1139/f98-038

    CrossRef Google Scholar

    [32] JYRKAMA M I, SYKES J F. The impact of climate change on spatially varying groundwater recharge in the Grand River Watershed (Ontario)[J]. Journal of Hydrology, 2007, 3383/4): 237250.

    Google Scholar

    [33] PRIEBE E H, FRAPE S K, JACKSON R E, et al. Tracing recharge and groundwater evolution in a glaciated, regional-scale carbonate bedrock aquifer system, southern Ontario, Canada[J]. Applied Geochemistry, 2021, 124: 104794. doi: 10.1016/j.apgeochem.2020.104794

    CrossRef Google Scholar

    [34] EASTON R M, CARTER T R. Extension of grenville basement beneath southwestern Ontario, rock types and tectonic subdivisions[R]. OFM0162. Ontario Geological Survey, 1991.

    Google Scholar

    [35] MIYAKE Y, TOGASHI H, TASHIRO M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes[J]. Journal of the American Chemical Society, 2006, 1287): 21722173. doi: 10.1021/ja056354d

    CrossRef Google Scholar

    [36] DAVISON W, ZHANG Hao. Progress in understanding the use of diffusive gradients in thin films (DGT)-back to basics[J]. Environmental Chemistry, 2012, 91): 113. doi: 10.1071/EN11084

    CrossRef Google Scholar

    [37] PI Kunfu, XIE Xianjun, MA Teng, et al. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation[J]. Water Research, 2020, 181: 115859. doi: 10.1016/j.watres.2020.115859

    CrossRef Google Scholar

    [38] VIOLLIER E, INGLETT P W, HUNTER K, et al. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters[J]. Applied Geochemistry, 2000, 156): 785790. doi: 10.1016/S0883-2927(99)00097-9

    CrossRef Google Scholar

    [39] CLINE J D. Spectrophotometric determination of Hydrogen sulfide in natural waters[J]. Limnology and Oceanography, 1969, 143): 454458. doi: 10.4319/lo.1969.14.3.0454

    CrossRef Google Scholar

    [40] NESSLER J. Colorimetric determination of ammonia by Nessler reagent[J]. Chemisches Zentralblatt, 1856, 27: 529541.

    Google Scholar

    [41] EPA. Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry[R]. EPA-821-R-02-019, 2002.

    Google Scholar

    [42] PARKHURST D L, APPELO C. Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[Z]. 2013.

    Google Scholar

    [43] DI NATALE F, ERTO A, LANCIA A, et al. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides[J]. Journal of Hazardous Materials, 2011, 1923): 18421850. doi: 10.1016/j.jhazmat.2011.07.021

    CrossRef Google Scholar

    [44] TIPPING E, LOFTS S, SONKE J. Humic Ion-Binding model VII: A revised parameterisation of cation-binding by humic substances[J]. Environmental Chemistry, 2011, 83): 225235. doi: 10.1071/EN11016

    CrossRef Google Scholar

    [45] FERNÁNDEZ-GÓMEZ C, DIMOCK B, HINTELMANN H, et al. Development of the DGT technique for Hg measurement in water: Comparison of three different types of samplers in laboratory assays[J]. Chemosphere, 2011, 859): 14521457. doi: 10.1016/j.chemosphere.2011.07.080

    CrossRef Google Scholar

    [46] HONG Y S, RIFKIN E, BOUWER E J. Combination of diffusive gradient in a thin film probe and IC-ICP-MS for the simultaneous determination of CH3Hg+ and Hg2+ in oxic water[J]. Environmental Science & Technology, 2011, 4515): 64296436.

    Google Scholar

    [47] ZHANG H, DAVISON W. Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films[J]. Analytical Chemistry, 2000, 7218): 44474457. doi: 10.1021/ac0004097

    CrossRef Google Scholar

    [48] DOČEKALOVÁ H, DIVIŠ P. Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems[J]. Talanta, 2005, 655): 11741178. doi: 10.1016/j.talanta.2004.08.054

    CrossRef Google Scholar

    [49] PELCOVÁ P, DOČEKALOVÁ H, KLECKEROVÁ A. Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters[J]. Analytica Chimica Acta, 2014, 819: 4248. doi: 10.1016/j.aca.2014.02.013

    CrossRef Google Scholar

    [50] MILLER C L, SOUTHWORTH G, BROOKS S, et al. Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment[J]. Environmental Science & Technology, 2009, 4322): 85488553.

    Google Scholar

    [51] TIPPING E, LOFTS S, HOOPER H, et al. Critical limits for Hg(II) in soils, derived from chronic toxicity data[J]. Environmental Pollution, 2010, 1587): 24652471. doi: 10.1016/j.envpol.2010.03.027

    CrossRef Google Scholar

    [52] LOREDO J, LUQUE C, IGLESIAS J G. Conditions of formation of mercury deposits from the Cantabrian zone (Spain)[J]. Bulletin de Minéralogie, 1988, 1113/4): 393400.

    Google Scholar

    [53] GRASSI S, NETTI R. Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy)[J]. Journal of Hydrology, 2000, 2373/4): 198211.

    Google Scholar

    [54] LU X, JAFFE R. Interaction between Hg(II) and natural dissolved organic matter: A fluorescence spectroscopy based study[J]. Water Research, 2001, 357): 17931803. doi: 10.1016/S0043-1354(00)00423-1

    CrossRef Google Scholar

    [55] SCHAEFER M V, YING S C, BENNER S G, et al. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J]. Environmental Science & Technology, 2016, 507): 35213529.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(183) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint