2024 Vol. 51, No. 6
Article Contents

WANG Jinxuan, WANG Yi, GAO Fan, ZHANG Xuanming, MA Zhitong, YANG Fan. River-groundwater transformation and ecological effects in the Tuwei River watershed[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 36-46. doi: 10.16030/j.cnki.issn.1000-3665.202406049
Citation: WANG Jinxuan, WANG Yi, GAO Fan, ZHANG Xuanming, MA Zhitong, YANG Fan. River-groundwater transformation and ecological effects in the Tuwei River watershed[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 36-46. doi: 10.16030/j.cnki.issn.1000-3665.202406049

River-groundwater transformation and ecological effects in the Tuwei River watershed

  • The Tuwei River, an important tributary of the Yellow River, located in the eastern Jiziwan region exhibits a close hydraulic connection between atmospheric precipitation, groundwater, and river-lake water in the watershed. This connection influences the evolution, stability and safety of the watershed ecological pattern. Based on the geological, geomorphological and hydrogeological conditions, and the water transformation between atmospheric precipitation, groundwater, and river-lake water (hereinafter referred to as three-water) in the Tuwei River, this study examined the characteristics of the three-water transformation and their ecological effects using field investigation, dynamic observation, sensing interpretation, base flow analysis, and statistical analysis. Under the control of geological and geomorphological conditions and the three-water transformation, the watershed can be spatially divided into lakes-shrub-grass-tree wet environment ecosystem, grass-shrub-tree-sand dry environment ecosystem, dwarf sparse forest-grass dry environment ecosystem, farmland-tree wet environment ecosystem, and riparian wet environment ecosystem. Since the 1990s, the vegetation coverage of the watershed has increased, while the groundwater levels have dropped, the river base flow has decreased, and the lake wetland has shown a decreasing trend. The formation and evolution of the watershed ecological pattern is the result of a combination of natural factors and human activities. The geological and geomorphological conditions control the watershed ecological pattern, and the hydrological cycle characteristics control the evolution direction and spatiotemporal variation trend of the watershed ecological pattern. Human activities have greatly changed the original ecological pattern and dominated the direction and intensity of the contemporary ecological pattern evolution. The safety and stability of the watershed ecological pattern are highly dependent on water resources. Maintaining hydrological connectivity, enhancing the intensity of three-water transformation, and ensuring the groundwater level in the desert area within the range of 1.5~5 m are crucial to the health of the ecosystem in the area. Based on the one-way three-water transformation characteristics in the Tuwei River, the definition of the riparian zone was proposed. The riparian zone is the source and sink of water flow, material flow, energy flow, and information flow in the watershed, and plays the role of an ecological corridor. The ecological function of the riparian zone has an indicative effect on the status of the watershed ecological environment and can be used as one of the important indicators for the assessment of the watershed ecological system. These findings support the protection and governance of ecological environments for the Jiziwan region of the Yellow River and similar watersheds.

  • 加载中
  • [1] 萨娜,赵金羽,寇旭阳,等. “山水林田湖草沙生命共同体”耦合框架、模型与展望[J]. 生态学报,2023,43(11):4333 − 4343. [SA Na,ZHAO Jinyu,KOU Xuyang,et al. Coupling mountains-waters-forests-farmlands-lakes-grasslands-sandlands life community:Framework,models and prospect[J]. Acta Ecologica Sinica,2023,43(11):4333 − 4343. (in Chinese with English abstract)]

    Google Scholar

    SA Na, ZHAO Jinyu, KOU Xuyang, et al. Coupling mountains-waters-forests-farmlands-lakes-grasslands-sandlands life community: Framework, models and prospect[J]. Acta Ecologica Sinica, 2023, 43(11): 4333 − 4343. (in Chinese with English abstract)

    Google Scholar

    [2] 王文科,宫程程,张在勇,等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7):702 − 718. [WANG Wenke,GONG Chengcheng,ZHANG Zaiyong,et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science,2018,33(7):702 − 718. (in Chinese with English abstract)] doi: 10.11867/j.issn.1001-8166.2018.07.0702

    CrossRef Google Scholar

    WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 2018, 33(7): 702 − 718. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2018.07.0702

    CrossRef Google Scholar

    [3] 祁晓凡,李文鹏,崔虎群,等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质,2022,49(3):29 − 43. [QI Xiaofan,LI Wenpeng,CUI Huqun,et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology,2022,49(3):29 − 43. (in Chinese with English abstract)]

    Google Scholar

    QI Xiaofan, LI Wenpeng, CUI Huqun, et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 29 − 43. (in Chinese with English abstract)

    Google Scholar

    [4] 陈喜,黄日超,黄峰,等. 西北内陆河流域水循环和生态演变与功能保障机制研究[J]. 水文地质工程地质,2022,49(5):12 − 21. [CHEN Xi,HUANG Richao,HUANG Feng,et al. A comprehensive study of the maintaining mechanisms for hydrological cycle and ecological evolution and function in the northwest inland river basins of China[J]. Hydrogeology & Engineering Geology,2022,49(5):12 − 21. (in Chinese with English abstract)]

    Google Scholar

    CHEN Xi, HUANG Richao, HUANG Feng, et al. A comprehensive study of the maintaining mechanisms for hydrological cycle and ecological evolution and function in the northwest inland river basins of China[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 12 − 21. (in Chinese with English abstract)

    Google Scholar

    [5] 梁加乐,陈万旭,李江风,等. 黄河流域景观破碎化时空特征及其成因探测[J]. 生态学报,2022,42(5):1993 − 2009. [LIANG Jiale,CHEN Wanxu,LI Jiangfeng,et al. Spatiotemporal patterns of landscape fragmentation and causes in the Yellow River Basin[J]. Acta Ecologica Sinica,2022,42(5):1993 − 2009. (in Chinese with English abstract)]

    Google Scholar

    LIANG Jiale, CHEN Wanxu, LI Jiangfeng, et al. Spatiotemporal patterns of landscape fragmentation and causes in the Yellow River Basin[J]. Acta Ecologica Sinica, 2022, 42(5): 1993 − 2009. (in Chinese with English abstract)

    Google Scholar

    [6] 王尧,陈睿山,夏子龙,等. 黄河流域生态系统服务价值变化评估及生态地质调查建议[J]. 地质通报,2020,39(10):1650 − 1662. [WANG Yao,CHEN Ruishan,XIA Zilong,et al. The evaluation of ecosystem service value and its spatial change in the Yellow River Basin and suggestions from the ecological geology perspectives[J]. Geological Bulletin of China,2020,39(10):1650 − 1662. (in Chinese with English abstract)] doi: 10.12097/j.issn.1671-2552.2020.10.015

    CrossRef Google Scholar

    WANG Yao, CHEN Ruishan, XIA Zilong, et al. The evaluation of ecosystem service value and its spatial change in the Yellow River Basin and suggestions from the ecological geology perspectives[J]. Geological Bulletin of China, 2020, 39(10): 1650 − 1662. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2020.10.015

    CrossRef Google Scholar

    [7] 康紫薇,张正勇,位宏,等. 基于土地利用变化的玛纳斯河流域景观生态风险评价[J]. 生态学报,2020,40(18):6472 − 6485. [KANG Ziwei,ZHANG Zhengyong,WEI Hong,et al. Landscape ecological risk assessment in Manas River Basin based on land use change[J]. Acta Ecologica Sinica,2020,40(18):6472 − 6485. (in Chinese with English abstract)]

    Google Scholar

    KANG Ziwei, ZHANG Zhengyong, WEI Hong, et al. Landscape ecological risk assessment in Manas River Basin based on land use change[J]. Acta Ecologica Sinica, 2020, 40(18): 6472 − 6485. (in Chinese with English abstract)

    Google Scholar

    [8] 陈乐,卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报,2022,31(9):1909 − 1918. [CHEN Le,WEI Wei. Spatiotemporal changes in land use and habitat quality in a typical dryland watershed of northwest China[J]. Ecology and Environmental Sciences,2022,31(9):1909 − 1918. (in Chinese with English abstract)]

    Google Scholar

    CHEN Le, WEI Wei. Spatiotemporal changes in land use and habitat quality in a typical dryland watershed of northwest China[J]. Ecology and Environmental Sciences, 2022, 31(9): 1909 − 1918. (in Chinese with English abstract)

    Google Scholar

    [9] 杨亮洁,王晶,魏伟,等. 干旱内陆河流域生态安全格局的构建及优化——以石羊河流域为例[J]. 生态学报,2020,40(17):5915 − 5927. [YANG Liangjie,WANG Jing,WEI Wei,et al. Ecological security pattern construction and optimization in arid inland river basin:A case study of Shiyang River Basin[J]. Acta Ecologica Sinica,2020,40(17):5915 − 5927. (in Chinese with English abstract)]

    Google Scholar

    YANG Liangjie, WANG Jing, WEI Wei, et al. Ecological security pattern construction and optimization in arid inland river basin: A case study of Shiyang River Basin[J]. Acta Ecologica Sinica, 2020, 40(17): 5915 − 5927. (in Chinese with English abstract)

    Google Scholar

    [10] 王浩,胡鹏. 水循环视角下的黄河流域生态保护关键问题[J]. 水利学报,2020,51(9):1009 − 1014. [WANG Hao,HU Peng. Key issues of ecological conservation in the Yellow River Basin from a water cycle perspective[J]. Journal of Hydraulic Engineering,2020,51(9):1009 − 1014. (in Chinese with English abstract)]

    Google Scholar

    WANG Hao, HU Peng. Key issues of ecological conservation in the Yellow River Basin from a water cycle perspective[J]. Journal of Hydraulic Engineering, 2020, 51(9): 1009 − 1014. (in Chinese with English abstract)

    Google Scholar

    [11] 王军,孙雨芹,杨智威,等. 自然资源-社会经济-生态系统耦合视角下的生态保护修复转型思考[J]. 地质通报,2024,43(8):1297 − 1304. [WANG Jun,SUN Yuqin,YANG Zhiwei,et al. Thinking for the transformation of ecological protection and restoration in the coupled view[J]. Geological Bulletin of China,2024,43(8):1297 − 1304. (in Chinese with English abstract)]

    Google Scholar

    WANG Jun, SUN Yuqin, YANG Zhiwei, et al. Thinking for the transformation of ecological protection and restoration in the coupled view[J]. Geological Bulletin of China, 2024, 43(8): 1297 − 1304. (in Chinese with English abstract)

    Google Scholar

    [12] 邵景力,白国营,刘翠珠,等. 我国地下水管理面临的问题与对策——兼谈地下水“双控”管理[J]. 水文地质工程地质,2023,50(5):1 − 9. [SHAO Jingli,BAI Guoying,LIU Cuizhu,et al. Problems and countermeasures of groundwater management in China:Concurrently talking about groundwater dual-control management[J]. Hydrogeology & Engineering Geology,2023,50(5):1 − 9. (in Chinese with English abstract)]

    Google Scholar

    SHAO Jingli, BAI Guoying, LIU Cuizhu, et al. Problems and countermeasures of groundwater management in China: Concurrently talking about groundwater dual-control management[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 1 − 9. (in Chinese with English abstract)

    Google Scholar

    [13] WANG Zhan,WANG Wenke,ZHANG Zaiyong,et al. River-groundwater interaction affected species composition and diversity perpendicular to a regulated river in an arid riparian zone[J]. Global Ecology and Conservation,2021,27:e01595. doi: 10.1016/j.gecco.2021.e01595

    CrossRef Google Scholar

    [14] 井江楠. 变化环境下秃尾河流域水量平衡关键要素演变与水文生态效应[D]. 西安:长安大学,2023. [JING Jiangnan. Evolution of key elements of water balance and hydrological and ecological effects in Tuwei River Basin under changing environment[D]. Xi’an:Chang’an University,2023. (in Chinese with English abstract)]

    Google Scholar

    JING Jiangnan. Evolution of key elements of water balance and hydrological and ecological effects in Tuwei River Basin under changing environment[D]. Xi’an: Chang’an University, 2023. (in Chinese with English abstract)

    Google Scholar

    [15] 王文科,孔金玲,段磊,等. 黄河流域河水与地下水转化关系研究[J]. 中国科学E辑:技术科学,2004(增刊1):23 − 33. [WANG Wenke,KONG Jinling,DUAN Lei,et al. Study on the transformation relationship between river water and groundwater in the Yellow River Basin[J]. Scientia Sinica E:Technical Sciences,2004(Sup1):23 − 33. (in Chinese)]

    Google Scholar

    WANG Wenke, KONG Jinling, DUAN Lei, et al. Study on the transformation relationship between river water and groundwater in the Yellow River Basin[J]. Scientia Sinica E: Technical Sciences, 2004(Sup1): 23 − 33. (in Chinese)

    Google Scholar

    [16] 孙兆峰,王双银,刘晶,等. 秃尾河流域径流衰减驱动力因子分析[J]. 自然资源学报,2017,32(2):310 − 320. [SUN Zhaofeng,WANG Shuangyin,LIU Jing,et al. Driving force analysis of runoff attenuation in Tuwei River Basin[J]. Journal of Natural Resources,2017,32(2):310 − 320. (in Chinese with English abstract)] doi: 10.11849/zrzyxb.20160167

    CrossRef Google Scholar

    SUN Zhaofeng, WANG Shuangyin, LIU Jing, et al. Driving force analysis of runoff attenuation in Tuwei River Basin[J]. Journal of Natural Resources, 2017, 32(2): 310 − 320. (in Chinese with English abstract) doi: 10.11849/zrzyxb.20160167

    CrossRef Google Scholar

    [17] WAHL K L,WAHL T L. Determining the flow of comal springs at New Braunfels,Texas[J]. Proceedings of Texas Water,1995,95(6):16 − 27.

    Google Scholar

    [18] 朱钧. 神府—东胜地区环境地质与水资源综合评价[R]. 北京:地质矿产部,1991. [ZHUN Jun. Comprehensive evaluation of environmental geology and water resources in Shenfu-Dongsheng area[R]. Beijing:Ministry of Geology and Mineral Resources,1991. (in Chinese)]

    Google Scholar

    ZHUN Jun. Comprehensive evaluation of environmental geology and water resources in Shenfu-Dongsheng area[R]. Beijing: Ministry of Geology and Mineral Resources, 1991. (in Chinese)

    Google Scholar

    [19] 杨泽元,王文科,马雄德,等. 秃尾河流域表生生态环境现状评价[J]. 地球科学与环境学报,2006,28(3):87 − 91. [YANG Zeyuan,WANG Wenke,MA Xiongde,et al. Assessment of present state on supergene eco-environment in Tuwei River watershed[J]. Journal of Earth Sciences and Environment,2006,28(3):87 − 91. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-6561.2006.03.019

    CrossRef Google Scholar

    YANG Zeyuan, WANG Wenke, MA Xiongde, et al. Assessment of present state on supergene eco-environment in Tuwei River watershed[J]. Journal of Earth Sciences and Environment, 2006, 28(3): 87 − 91. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2006.03.019

    CrossRef Google Scholar

    [20] 王文科. 毛乌素沙地降雨(蒸发)-包气带水-地下水转化机理与生态效应[R]. 西安:长安大学,2011. [WANG Wenke. Transformation mechanism and ecological effects of rainfall (evaporation)-vadose zone water-groundwater in Maowusu Sandy Land[R]. Xi’an:Chang’an University,2011. (in Chinese)]

    Google Scholar

    WANG Wenke. Transformation mechanism and ecological effects of rainfall (evaporation)-vadose zone water-groundwater in Maowusu Sandy Land[R]. Xi’an: Chang’an University, 2011. (in Chinese)

    Google Scholar

    [21] ZHAO Ming,WANG Wenke,WANG Zhoufeng,et al. Water use of Salix in the variably unsaturated zone of a semiarid desert region based on in-situ observation[J]. Journal of Hydrology,2020,591:125579. doi: 10.1016/j.jhydrol.2020.125579

    CrossRef Google Scholar

    [22] LIND L,HASSELQUIST E M,LAUDON H,et al. Towards ecologically functional riparian zones:A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes[J]. Journal of Environmental Management,2019,249:109391. doi: 10.1016/j.jenvman.2019.109391

    CrossRef Google Scholar

    [23] 魏晓华,孙阁. 流域生态系统过程与管理[M]. 北京:高等教育出版社,2009. [WEI Xiaohua,SUN Ge. River basin ecosystem process and management[M]. Beijing:Higher Education Press,2009. (in Chinese)]

    Google Scholar

    WEI Xiaohua, SUN Ge. River basin ecosystem process and management[M]. Beijing: Higher Education Press, 2009. (in Chinese)

    Google Scholar

    [24] WANG Jinxuan,MA Zhitong,WANG Zhoufeng,et al. Evolution of the landscape ecological pattern in arid riparian zones based on the perspective of watershed river-groundwater transformation[J]. Journal of Hydrology,2023,625:130119. doi: 10.1016/j.jhydrol.2023.130119

    CrossRef Google Scholar

    [25] MA Zhitong,WANG Wenke,ZHANG Zaiyong,et al. River–groundwater interactions in the arid and semiarid areas of northwestern China[J]. Hydrogeology Journal,2024,32(1):37 − 57. doi: 10.1007/s10040-023-02691-w

    CrossRef Google Scholar

    [26] YE Mengmeng,HU Haizhu,WU Panlong,et al. Ecological responses to hydrological connectivity in grassland riparian zones:Insights from vegetation and ground-dwelling arthropods[J]. Science of The Total Environment,2024,922:171196. doi: 10.1016/j.scitotenv.2024.171196

    CrossRef Google Scholar

    [27] COLE L J,STOCKAN J,HELLIWELL R. Managing riparian buffer strips to optimise ecosystem services:A review[J]. Agriculture,Ecosystems & Environment,2020,296:106891.

    Google Scholar

    [28] 王立新,刘华民,刘玉虹,等. 河流景观生态学概念,理论基础与研究重点[J]. 湿地科学,2014,12(2):228 − 234. [WANG Lixin,LIU Huamin,LIU Yuhong,et al. Introduction to the concept,foundation and focuses of riverscape ecology[J]. Wetland Science,2014,12(2):228 − 234. (in Chinese with English abstract)]

    Google Scholar

    WANG Lixin, LIU Huamin, LIU Yuhong, et al. Introduction to the concept, foundation and focuses of riverscape ecology[J]. Wetland Science, 2014, 12(2): 228 − 234. (in Chinese with English abstract)

    Google Scholar

    [29] KWON H I,KOH D C,JUNG Y Y,et al. Evaluating the impacts of intense seasonal groundwater pumping on stream–aquifer interactions in agricultural riparian zones using a multi-parameter approach[J]. Journal of Hydrology,2020,584:124683. doi: 10.1016/j.jhydrol.2020.124683

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(69) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint