2025 Vol. 52, No. 1
Article Contents

DING Lanfang, ZHANG Zhiyuan, JIANG Xiaowei, WANG Xusheng, WAN Li. Impact of stream-groundwater interaction on stream water source composition: A case study of the Dosit River[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 42-52. doi: 10.16030/j.cnki.issn.1000-3665.202401053
Citation: DING Lanfang, ZHANG Zhiyuan, JIANG Xiaowei, WANG Xusheng, WAN Li. Impact of stream-groundwater interaction on stream water source composition: A case study of the Dosit River[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 42-52. doi: 10.16030/j.cnki.issn.1000-3665.202401053

Impact of stream-groundwater interaction on stream water source composition: A case study of the Dosit River

More Information
  • The alternation of gaining and losing reaches is a common manifestation of stream-groundwater exchange, and studies on the stream water source composition where source means the location of gaining reaches have become one of the frontiers in stream water quality research. However, the characteristics of stream water source compositions in arid and semi-arid areas or at large watershed scales remain unclear. By taking the Dosit River in the Ordos Plateau as an example, this study built a coupled stream-groundwater numerical model and analyzed the characteristics of stream-groundwater exchange in the Dosit River under three annual precipitation scenarios as well as their impact on the stream water source composition along the river. The results show that the Dosit River predominantly receives groundwater discharge, but the stream-groundwater exchange patterns on reach scale are heterogeneous, with a percentage of losing reaches of more than 40%. There is a concentration effect on the stream water source composition, e.g., in the Kushuigou section, 80% of the stream discharge under the three precipitation scenarios originates from only 12.3%, 9.2%, and 18.6% of the total river length, respectively. The concentration effect of stream water source composition correlates well with stream discharge, with the location of stream water sources becoming more concentrated as discharge decreases. This study is the first to investigate the characteristics of stream water source compositions in arid and semi-arid regions, highlighting the crucial role of key reaches in maintaining stream discharge. These findings can provide guidance for the rational management of water resources and effective prevention of river pollution in arid and semi-arid regions.

  • 加载中
  • [1] WINTER T C,HARVEY J W,FRANKE O L,et al. Ground water and surface water:A single resource[J]. United States Geological Survey Circular,1998,1139:1 − 79.

    Google Scholar

    [2] FERGUSON C,MCINTOSH J C,JASECHKO S,et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge[J]. Communications Earth & Environment,2023,4(1):1 − 8.

    Google Scholar

    [3] 韩鹏飞,王旭升,蒋小伟,等. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质,2023,50(2):1 − 12. [HAN Pengfei,WANG Xusheng,JIANG Xiaowei,et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems:From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology,2023,50(2):1 − 12. (in Chinese with English abstract)]

    Google Scholar

    HAN Pengfei, WANG Xusheng, JIANG Xiaowei, et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 1 − 12. (in Chinese with English abstract)

    Google Scholar

    [4] 杜尧,马腾,邓娅敏,等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学,2017,42(5):661 − 673. [DU yao,MA Teng,DENG Yamin,et al. Hydro-biogeochemistry of hyporheic zone: Principles, methods and ecological significance[J]. Earth Science,2017,42(5):661 − 673. (in Chinese with English abstract)]

    Google Scholar

    DU yao, MA Teng, DENG Yamin, et al. Hydro-biogeochemistry of hyporheic zone: Principles, methods and ecological significance[J]. Earth Science, 2017, 42(5): 661 − 673. (in Chinese with English abstract)

    Google Scholar

    [5] 杨滨键,尚杰,于法稳. 农业面源污染防治的难点、问题及对策[J]. 中国生态农业学报(中英文),2019,27(2):236 − 245. [YANG Bingjian,SHANG Jie,YU Fawen. Difficulty, problems and countermeasures of agricultural non-point sources pollution controlin China[J]. Chinese Journal of Eco-Agriculture,2019,27(2):236 − 245. (in Chinese with English abstract)]

    Google Scholar

    YANG Bingjian, SHANG Jie, YU Fawen. Difficulty, problems and countermeasures of agricultural non-point sources pollution controlin China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 236 − 245. (in Chinese with English abstract)

    Google Scholar

    [6] 杜新强,方敏,冶雪艳. 地下水“三氮”污染来源及其识别方法研究进展[J]. 环境科学,2018,39(11):5266 − 5275. [DU Xinqiang,FANG Min,YE Xueyan. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science,2018,39(11):5266 − 5275. (in Chinese with English abstract)]

    Google Scholar

    DU Xinqiang, FANG Min, YE Xueyan. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science, 2018, 39(11): 5266 − 5275. (in Chinese with English abstract)

    Google Scholar

    [7] 涂春霖,陈庆松,尹林虎,等. 我国地下水硝酸盐污染及源解析研究进展[J]. 环境科学,2024,45(6):3129 − 3141. [TU Chunlin,CHEN Qingsong,YIN Linhu,et al. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science,2024,45(6):3129 − 3141. (in Chinese with English abstract)]

    Google Scholar

    TU Chunlin, CHEN Qingsong, YIN Linhu, et al. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science, 2024, 45(6): 3129 − 3141. (in Chinese with English abstract)

    Google Scholar

    [8] JOHNSON H M,STETS E G. Nitrate in streams during winter low-flow conditions as an indicator of legacy nitrate[J]. Water Resources Research,2020,56(11):e2019wr026996. doi: 10.1029/2019WR026996

    CrossRef Google Scholar

    [9] 薛禹群,张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义[J]. 环境科学学报,2009,29(3):474 − 481. [XUE Yuqun,ZHANG Youkuan. Twofold significance of ground water pollution prevention in China’s water pollution control[J]. Acta Scientiae Circumstantiae,2009,29(3):474 − 481. (in Chinese with English abstract)] doi: 10.3321/j.issn:0253-2468.2009.03.002

    CrossRef Google Scholar

    XUE Yuqun, ZHANG Youkuan. Twofold significance of ground water pollution prevention in China’s water pollution control[J]. Acta Scientiae Circumstantiae, 2009, 29(3): 474 − 481. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-2468.2009.03.002

    CrossRef Google Scholar

    [10] COVINO T,MCGLYNN B,MALLARD J. Stream-groundwater exchange and hydrologic turnover at the network scale[J]. Water Resources Research,2011,47(12):e2011wr010942. doi: 10.1029/2011WR010942

    CrossRef Google Scholar

    [11] MALLARD J,MCGLYNN B,COVINO T. Lateral inflows,stream-groundwater exchange,and network geometry influence stream water composition[J]. Water Resources Research,2014,50(6):4603 − 4623. doi: 10.1002/2013WR014944

    CrossRef Google Scholar

    [12] ZHANG Zhiyuan,SCHMIDT C,NIXDORF E,et al. Effects of heterogeneous stream-groundwater exchange on the source composition of stream discharge and solute load[J]. Water Resources Research,2021,57(8):1 − 19.

    Google Scholar

    [13] JÄHKEL A,GRAEBER D,FLECKENSTEIN J H,et al. Hydrologic turnover matters—gross gains and losses of six first-order streams across contrasting landscapes and flow regimes[J]. Water Resources Research,2022,58(7):e2022wr032129. doi: 10.1029/2022WR032129

    CrossRef Google Scholar

    [14] CONANT B,CHERRY J A,GILLHAM R W. A PCE groundwater plume discharging to a river:Influence of the streambed and near-river zone on contaminant distributions[J]. Journal of Contaminant Hydrology,2004,73(1/2/3/4):249 − 279.

    Google Scholar

    [15] SCHMIDT C,BAYER-RAICH M,SCHIRMER M. Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale[J]. Hydrology and Earth System Sciences,2006,10(6):849 − 859. doi: 10.5194/hess-10-849-2006

    CrossRef Google Scholar

    [16] BATLLE-AGUILAR J,HARRINGTON G A,LEBLANC M,et al. Chemistry of groundwater discharge inferred from longitudinal river sampling[J]. Water Resources Research,2014,50(2):1550 − 1568. doi: 10.1002/2013WR013591

    CrossRef Google Scholar

    [17] 王俊智. 盆地多级次地下水流系统识别方法研究[D]. 北京:中国地质大学(北京),2015. [WANG Junzhi. A methodological study on the identification of hierarchically nested groundwater flow systems in Drainage Basins[D]. Beijing:China University of Geosciences (Beijing),2015. (in Chinese with English abstract)]

    Google Scholar

    WANG Junzhi. A methodological study on the identification of hierarchically nested groundwater flow systems in Drainage Basins[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese with English abstract)

    Google Scholar

    [18] 钱会,窦妍,李西建,等. 都思兔河氢氧稳定同位素沿流程的变化及其对河水蒸发的指示[J]. 水文地质工程地质,2007,34(1):107 − 112. [QIAN Hui,DOU Yan,LI Xijian,et al. Changes of δ18O and δD along Dousitu River and its indication of river water evaporation[J]. Hydrogeology & Engineering Geology,2007,34(1):107 − 112. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2007.01.024

    CrossRef Google Scholar

    QIAN Hui, DOU Yan, LI Xijian, et al. Changes of δ18O and δD along Dousitu River and its indication of river water evaporation[J]. Hydrogeology & Engineering Geology, 2007, 34(1): 107 − 112. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.01.024

    CrossRef Google Scholar

    [19] 孙芳强. 鄂尔多斯盆地都思兔河流域地下水循环及生态环境效应研究[D]. 西安:长安大学,2010. [SUN Fangqiang. Research on groundwater circulation and environment effect of Dusitu river in Ordos Basin[D]. Xi’an:Chang’an University,2010. (in Chinese with English abstract)]

    Google Scholar

    SUN Fangqiang. Research on groundwater circulation and environment effect of Dusitu river in Ordos Basin[D]. Xi’an: Chang’an University, 2010. (in Chinese with English abstract)

    Google Scholar

    [20] 侯光才,张茂省,刘方,等. 鄂尔多斯盆地地下水勘查研究[M]. 北京:地质出版社,2008. [HOU Guangcai,ZHANG Maosheng,LIU Fang,et al. Study on groundwater exploration in Ordos basin[M]. Beijing:Geological Publishing House,2008. (in Chinese)]

    Google Scholar

    HOU Guangcai, ZHANG Maosheng, LIU Fang, et al. Study on groundwater exploration in Ordos basin[M]. Beijing: Geological Publishing House, 2008. (in Chinese)

    Google Scholar

    [21] 蒋小伟,万力,王旭升. 区域地下水流理论进展[M]. 北京:地质出版社,2013. [JIANG Xiaowei,WAN Li,WANG Xusheng. Advances in the theory of regional groundwater flow[M]. Beijing:Geological Publishing House,2013. (in Chinese)]

    Google Scholar

    JIANG Xiaowei, WAN Li, WANG Xusheng. Advances in the theory of regional groundwater flow[M]. Beijing: Geological Publishing House, 2013. (in Chinese)

    Google Scholar

    [22] 王恒. 基于水化学演化规律的盆地地下水循环研究[D]. 北京:中国地质大学(北京),2016. [WANG Heng. A methodological study on the hydrogeochemical characterization of hierarchically nested groundwater flow systems[D]. Beijing:China University of Geosciences (Beijing),2016. (in Chinese with English abstract)]

    Google Scholar

    WANG Heng. A methodological study on the hydrogeochemical characterization of hierarchically nested groundwater flow systems[D]. Beijing: China University of Geosciences (Beijing), 2016. (in Chinese with English abstract)

    Google Scholar

    [23] 庞忠和,黄天明,杨硕,等. 包气带在干旱半干旱地区地下水补给研究中的应用[J]. 工程地质学报,2018,26(1):51 − 61. [PANG Zhonghe,HUANG Tianming,YANG Shuo,et al. The potential of the unsturated zone in groundwater recharge in arid and semiarid areas[J]. Journal of Engineering Geology,2018,26(1):51 − 61. (in Chinese with English abstract)]

    Google Scholar

    PANG Zhonghe, HUANG Tianming, YANG Shuo, et al. The potential of the unsturated zone in groundwater recharge in arid and semiarid areas[J]. Journal of Engineering Geology, 2018, 26(1): 51 − 61. (in Chinese with English abstract)

    Google Scholar

    [24] 陈飞,徐翔宇,羊艳,等. 中国地下水资源演变趋势及影响因素分析[J]. 水科学进展,2020,31(6):811 − 818. [CHEN Fei,XU Xiangyu,YANG Yan,et al. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances In Water Science,2020,31(6):811 − 818. (in Chinese with English abstract)]

    Google Scholar

    CHEN Fei, XU Xiangyu, YANG Yan, et al. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances In Water Science, 2020, 31(6): 811 − 818. (in Chinese with English abstract)

    Google Scholar

    [25] 赵芳,田质胜,冯一鸣,等. 变化环境下的地下水动态响应研究进展[J]. 济南大学学报(自然科学版),2020,34(1):69 − 75. . [ZHAO Fang,TIAN Zhisheng,FENG Yiming,et al. Research progress on groundwater dynamic response under changing environments[J]. Journal of University of Jinan (Science and Technology),2020,34(1):69 − 75. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Fang, TIAN Zhisheng, FENG Yiming, et al. Research progress on groundwater dynamic response under changing environments[J]. Journal of University of Jinan (Science and Technology), 2020, 34(1): 69 − 75. (in Chinese with English abstract)

    Google Scholar

    [26] 王平. 西北干旱区间歇性河流与含水层水量交换研究进展与展望[J]. 地理科学进展,2018,37(2):183 − 197. [WANG Ping. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China[J]. Progress in Geography,2018,37(2):183 − 197. (in Chinese with English abstract)]

    Google Scholar

    WANG Ping. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China[J]. Progress in Geography, 2018, 37(2): 183 − 197. (in Chinese with English abstract)

    Google Scholar

    [27] 孙金,王怡璇,杨璐,等. 锡林河上游雨季降水、河水和地下水转化关系[J]. 环境科学,2023,44(12):6754 − 6766. [SUN Jin,WANG Yixuan,YANG Lu,et al. Relationship Between precipitation, river water, and groundwater conversion in the upper reaches of Xilin River during the rainy season[J]. Environmental Science,2023,44(12):6754 − 6766. (in Chinese with English abstract)]

    Google Scholar

    SUN Jin, WANG Yixuan, YANG Lu, et al. Relationship Between precipitation, river water, and groundwater conversion in the upper reaches of Xilin River during the rainy season[J]. Environmental Science, 2023, 44(12): 6754 − 6766. (in Chinese with English abstract)

    Google Scholar

    [28] 刘荣. 都思兔河水环境现状调查分析[D]. 呼和浩特:内蒙古大学,2019. [LIU Rong. Investigation and analysis of water environment of Dustu River[D]. Hohhot:Inner Mongolia University,2019. (in Chinese with English abstract)]

    Google Scholar

    LIU Rong. Investigation and analysis of water environment of Dustu River[D]. Hohhot: Inner Mongolia University, 2019. (in Chinese with English abstract)

    Google Scholar

    [29] 张志远. 巨厚潜水含水层自流井的水动力特征研究[D]. 北京:中国地质大学(北京),2018. [ZHANG Zhiyuan. A study on hydrodynamic characteristic of flowing wells in thick unconfined aquifers[D]. Beijing:China University of Geosciences (Beijing),2018. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Zhiyuan. A study on hydrodynamic characteristic of flowing wells in thick unconfined aquifers[D]. Beijing: China University of Geosciences (Beijing), 2018. (in Chinese with English abstract)

    Google Scholar

    [30] NISWONGER R G,PRUDIC D E. Documentation of the streamflow-routing (SFR2) package to include unsaturated flow beneath streams - A modification to SFR1[J]. Techniques and Methods,2005,6(A13):1 − 50.

    Google Scholar

    [31] 余忠波,黄勇,FRANKLIN W S. 地下水水文学原理[M]. 北京:科学出版社,2008. [YU Zhongbo,HUANG Yong,FRANKLIN W S. Principles of groundwater hydrology[M]. Beijing:Science Press,2008. (in Chinese)].

    Google Scholar

    [32] 靳孟贵,鲜阳,刘延锋. 脱节型河流与地下水相互作用研究进展[J]. 水科学进展,2017,28(1):149 − 160. [JIN Menggui,XIAN Yang,LIU Yanfeng. Disconnected stream and groundwater interaction:A review[J]. Advances in Water Science,2017,28(1):149 − 160. (in Chinese with English abstract)]

    Google Scholar

    JIN Menggui, XIAN Yang, LIU Yanfeng. Disconnected stream and groundwater interaction: A review[J]. Advances in Water Science, 2017, 28(1): 149 − 160. (in Chinese with English abstract)

    Google Scholar

    [33] 胡汝骥,樊自立,王亚俊,等. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报,2002,17(3):321 − 326. [HU Ruji,FAN Zili,WANG Yajun,et al. Groundwater resources and their characteristics in arid lands of NorthWestern China[J]. Journal of Natural Resources,2002,17(3):321 − 326. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-3037.2002.03.012

    CrossRef Google Scholar

    HU Ruji, FAN Zili, WANG Yajun, et al. Groundwater resources and their characteristics in arid lands of NorthWestern China[J]. Journal of Natural Resources, 2002, 17(3): 321 − 326. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-3037.2002.03.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(221) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint