Citation: | YAO Hongyu, AI Ronghui, KANG Xueyuan, WU Jichun, SHI Xiaoqing. Prediction and uncertainty analysis of pollution flux of typical chlorinated hydrocarbon contaminated sites[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 68-78. doi: 10.16030/j.cnki.issn.1000-3665.202312041 |
Accurate assessment of the pollution flux and its uncertainty in the plume boundary of NAPL dissolved phase pollution in organic contaminated sites is very important for site risk assessment and decision management. Due to the complexity of underground water flow field, the directions of dissolved pollution plume diffusion of multiple pollution sources are not completely consistent. Traditional numerical models require a lot of data, and usually, the site data is difficult to meet the needs, while current commonly used analytical models do not consider the complexity of groundwater flow field and the simultaneous existence of multiple pollution sources. To solve this issue, this study utilized soil and groundwater monitoring data from a typical chlorinated hydrocarbon polluted site in Changzhou, applying an upscale analytical model integrated with the flow function and coordinate transformation method. The maximum likelihood estimation inversion method was employed to identify pollution source areas, estimate structural parameters, groundwater flow rates, and equivalent low-permeability medium thickness, and predict pollution flux at the site boundary. The uncertainty is evaluated based on linearized uncertainty transfer method. The inversion results show that considering a complex flow field rather than assuming single-direction flow significantly reduces parameter uncertainty while improving agreement between simulated and observed values. The pollution situation at the site is still serious, and the pollution scope has exceeded the field limit. The pollution plume needs to be controlled and repaired in time. Under natural attenuation conditions, the simulation results show that After model correction, the uncertainty of predictions remains minimal, with the 95% confidence interval changed from (73.66±0.71) g/d in 2023 to (66.77±0.87) g/d in 2027. The results of site pollution flux prediction provide the scientific basis for risk assessment and restoration of the site.
[1] | 陆强,李辉,林匡飞,等. 上海浦东某氯代烃场地地下水污染现状调查[J]. 环境科学学报,2016,36(5):1730 − 1737. [LU Qiang,LI Hui,LIN Kuangfei,et al. Investigation of chlorinated hydrocarbons in groundwater from a typical contaminated site in pudong district,Shanghai[J]. Acta Scientiae Circumstantiae,2016,36(5):1730 − 1737. (in Chinese with English abstract)] LU Qiang, LI Hui, LIN Kuangfei, et al. Investigation of chlorinated hydrocarbons in groundwater from a typical contaminated site in pudong district, Shanghai[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1730 − 1737. (in Chinese with English abstract) |
[2] | 保航,江卓珊,罗彩访,等. 中国城市污染地块开发利用中的问题与对策[R/OL]. 南京:南京大学(溧水) 生态环境研究院,2019. [2023-06-09]. [BAO Hang, JIANG Zhuoshan, LUO Caifang, et al. Problems and countermeasures in the development and utilization of polluted land in Chinese cities[R/OL]. Nanjing: Lishui Institute of Ecological Environment, Nanjing University, 2019. (2019-04-17)[2023-06-09]. Https://www.greenpeace.org.cn/2019/04/17/redeveloping-the-polluted-land-under-chinas-cities-problems-and-solutions-report/. (in Chinese)] BAO Hang, JIANG Zhuoshan, LUO Caifang, et al. Problems and countermeasures in the development and utilization of polluted land in Chinese cities[R/OL]. Nanjing: Lishui Institute of Ecological Environment, Nanjing University, 2019. (2019-04-17)[2023-06-09]. Https://www.greenpeace.org.cn/2019/04/17/redeveloping-the-polluted-land-under-chinas-cities-problems-and-solutions-report/. (in Chinese) |
[3] | 朱辉,叶淑君,吴吉春,等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘,2021,28(5):26 − 34. [ZHU Hui,YE Shujun,WU Jichun,et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers,2021,28(5):26 − 34. (in Chinese with English abstract)] ZHU Hui, YE Shujun, WU Jichun, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 2021, 28(5): 26 − 34. (in Chinese with English abstract) |
[4] | KUEPER B H,REDMAN D,STARR R C,et al. A field experiment to study the behavior of tetrachloroethylene below the water table:Spatial distribution of residual and pooled DNAPL[J]. Ground Water,1993,31(5):756 − 766. doi: 10.1111/j.1745-6584.1993.tb00848.x |
[5] | MERCER J W,COHEN R M. A review of immiscible fluids in the subsurface:Properties,models,characterization and remediation[J]. Journal of Contaminant Hydrology,1990,6(2):107 − 163. doi: 10.1016/0169-7722(90)90043-G |
[6] | FRIED J J. Groundwater pollution:Theory,methodology,modelling and practical rules[M]. New York:Elsevier Scientific Pub. Co. ,1975. |
[7] | 宋美钰,施小清,马春龙,等. 复杂DNAPL污染源区溶解相污染通量的升尺度计算[J]. 中国环境科学,2022,42(5):2095 − 2104. [SONG Meiyu,SHI Xiaoqing,MA Chunlong,et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science,2022,42(5):2095 − 2104. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6923.2022.05.013 SONG Meiyu, SHI Xiaoqing, MA Chunlong, et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science, 2022, 42(5): 2095 − 2104. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2022.05.013 |
[8] | 边淑贞. 氯代烃污染地下水中重质非水相液体通量估算研究[D]. 保定:河北农业大学,2015. [BIAN Shuzhen. Research on contaminant mass flux of dense Non-Aqueous phase liquids in chlorinated hydrocarbon contaminated site[D]. Baoding:Agricultural University of Hebei,2015. (in Chinese with English abstract)] BIAN Shuzhen. Research on contaminant mass flux of dense Non-Aqueous phase liquids in chlorinated hydrocarbon contaminated site[D]. Baoding: Agricultural University of Hebei, 2015. (in Chinese with English abstract) |
[9] | GUILBEAULT M A,PARKER B L,CHERRY J A. Mass and flux distributions from DNAPL zones in sandy aquifers[J]. Groundwater,2005,43(1):70 − 86. doi: 10.1111/j.1745-6584.2005.tb02287.x |
[10] | INTEGRATED DNAPL SITE STRATEGY TEAM. Use and measurement of mass flux and mass discharge[EB/OL]. Washington:Interstate Technology & Regulatory Council,2010. (2021-06)[2023-06-09]. https://maf-1.itrcweb.org/. |
[11] | FALTA R W,BASU N,RAO P S. Assessing impacts of partial mass depletion in DNAPL source zones:II. Coupling source strength functions to plume evolution[J]. Journal of Contaminant Hydrology,2005,79(1/2):45 − 66. |
[12] | GUO Yongli,WEN Zhang,ZHANG Cheng,et al. Contamination characteristics of chlorinated hydrocarbons in a fractured karst aquifer using TMVOC and hydro-chemical techniques[J]. Science of the Total Environment,2021,794:148717. doi: 10.1016/j.scitotenv.2021.148717 |
[13] | KAZEMI NIA KORRANI A,SEPEHRNOORI K,DELSHAD M. Coupling IPhreeqc with UTCHEM to model reactive flow and transport[J]. Computers & Geosciences,2015,82:152 − 169. |
[14] | 张小茅,周俊,熊小锋,等. 地下水环境影响评价中污染物运移模拟软件的适宜性评估[J]. 环境科学研究,2019,32(1):10 − 16. [ZHANG Xiaomao,ZHOU Jun,XIONG Xiaofeng,et al. Evaluation of contaminant transport modeling software for groundwater environmental impact assessment[J]. Research of Environmental Sciences,2019,32(1):10 − 16. (in Chinese with English abstract)] ZHANG Xiaomao, ZHOU Jun, XIONG Xiaofeng, et al. Evaluation of contaminant transport modeling software for groundwater environmental impact assessment[J]. Research of Environmental Sciences, 2019, 32(1): 10 − 16. (in Chinese with English abstract) |
[15] | 孙科,吴吉春,施小清,等. 应用DNAPL plume快速评估场地DNAPL污染[J]. 水文地质工程地质,2013,40(6):92 − 97. [SUN Ke,WU Jichun,SHI Xiaoqing,et al. Rapid evaluation of field DNAPL contamination based on DNAPL plume[J]. Hydrogeology & Engineering Geology,2013,40(6):92 − 97. (in Chinese with English abstract)] SUN Ke, WU Jichun, SHI Xiaoqing, et al. Rapid evaluation of field DNAPL contamination based on DNAPL plume[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 92 − 97. (in Chinese with English abstract) |
[16] | FARHAT S K,NEWELL C J,LEE S A,et al. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds[J]. Journal of Contaminant Hydrology,2022,247:103987. doi: 10.1016/j.jconhyd.2022.103987 |
[17] | 薛佩佩,文章,梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报,2022,41(1):209 − 222. [XUE Peipei,WEN Zhang,LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology,2022,41(1):209 − 222. (in Chinese with English abstract)] XUE Peipei, WEN Zhang, LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 209 − 222. (in Chinese with English abstract) |
[18] | 郭芷琳,马瑞,张勇,等. 地下水污染物在高度非均质介质中的迁移过程:机理与数值模拟综述[J]. 中国科学(地球科学),2021,51(11):1817 − 1836. [GUO Zhilin,MA Rui,ZHANG Yong,et al. Contaminant transport in heterogeneous aquifers:A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Scientia Sinica(Terrae),2021,51(11):1817 − 1836. (in Chinese with English abstract)] GUO Zhilin, MA Rui, ZHANG Yong, et al. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Scientia Sinica(Terrae), 2021, 51(11): 1817 − 1836. (in Chinese with English abstract) |
[19] | ZHU Jianting,SYKES J F. Simple screening models of NAPL dissolution in the subsurface[J]. Journal of Contaminant Hydrology,2004,72(1/4):245 − 258. |
[20] | PARKER J C,PARK E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers[J]. Water Resources Research,2004,40(5):147 − 158. |
[21] | STEWART L D,CHAMBON J C,WIDDOWSON M A,et al. Upscaled modeling of complex DNAPL dissolution[J]. Journal of Contaminant Hydrology,2022,244:103920. doi: 10.1016/j.jconhyd.2021.103920 |
[22] | CHRIST J A,RAMSBURG C A,PENNELL K D,et al. Predicting DNAPL mass discharge from pool-dominated source zones[J]. Journal of Contaminant Hydrology,2010,114(1/4):18 − 34. |
[23] | 程洲,吴吉春,徐红霞,等. DNAPL在透镜体及表面活性剂作用下的运移研究[J]. 中国环境科学,2014,34(11):2888 − 2896. [CHENG Zhou,WU Jichun,XU Hongxia,et al. Investigation of the migration characteristic of DNAPL in aquifer with lenses and under the action of surfactant flushing[J]. China Environmental Science,2014,34(11):2888 − 2896. (in Chinese with English abstract)] CHENG Zhou, WU Jichun, XU Hongxia, et al. Investigation of the migration characteristic of DNAPL in aquifer with lenses and under the action of surfactant flushing[J]. China Environmental Science, 2014, 34(11): 2888 − 2896. (in Chinese with English abstract) |
[24] | LI Hailong,YANG Qichang. A least-squares penalty method algorithm for inverse problems of steady-state aquifer models[J]. Advances in Water Resources,2000,23(8):867 − 880. doi: 10.1016/S0309-1708(00)00018-X |
[25] | HOLLENBECK K J,JENSEN K H,et al. Maximum-likelihood estimation of unsaturated hydraulic parameters[J]. Journal of Hydrology,210(1/4):192–205. |
[26] | YOUNES A,ZAOUALI J,FAHS M,et al. Bayesian soil parameter estimation:Results of percolation-drainage vs infiltration laboratory experiments[J]. Journal of Hydrology,2018,565:770 − 778. doi: 10.1016/j.jhydrol.2018.08.082 |
[27] | BENTLEY L R. Least squares solution and calibration of steady state groundwater flow systems[J]. Advances in Water Resources,1993,16(2):137 − 148. doi: 10.1016/0309-1708(93)90004-Y |
[28] | LIU Xiaoyi,CARDIFF M A,KITANIDIS P K,et al. Parameter estimation in nonlinear environmental problems[J]. Stochastic Environmental Research and Risk Assessment,2010,24(7):1003 − 1022. doi: 10.1007/s00477-010-0395-y |
[29] | GILKS W R,ROBERTS G O,GEORGE E I. Adaptive direction sampling[J]. Journal of the Royal Statistical Society Series D(The Statistician),1994,43(1):179 − 189. |
[30] | CARDIFF M,LIU Xiaoyi,KITANIDIS P K,et al. Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model[J]. Journal of Contaminant Hydrology,2010,113(1/4):25 − 43. |
[31] | PARKER J,KIM U,BORDEN B. A practical approach for remediation performance assessment and optimization at DNAPL sites for early identification and correction of problems considering uncertainty[R]. America:University of Tennessee,2018. |
[32] | 袁松虎,张鹏,康学远,等. 含水层非均质性与污染修复[J]. 地球科学,2024,49(1):375 − 378. [YUAN Songhu,ZHANG Peng,KANG Xueyuan,et al. Aquifer heterogeneity and contamination remediation[J]. Earth Science,2024,49(1):375 − 378. (in Chinese with English abstract)] YUAN Songhu, ZHANG Peng, KANG Xueyuan, et al. Aquifer heterogeneity and contamination remediation[J]. Earth Science, 2024, 49(1): 375 − 378. (in Chinese with English abstract) |
[33] | PARKER J,KIM U,KITANIDIS P,et al. Stochastic cost optimization of DNAPL remediation–method description and sensitivity study[J]. Environmental Modelling & Software,2012,38:74 − 88. |
[34] | GENUCHTEN M,WIERENGA P J. Mass transfer studies in sorbing porous media I. analytical solutions[J]. Soil Science Society of America Journal,1976,40(4):473 − 480. doi: 10.2136/sssaj1976.03615995004000040011x |
[35] | PARKER J C,KIM U. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation[J]. Journal of Contaminant Hydrology,2015,182:157 − 172. doi: 10.1016/j.jconhyd.2015.09.008 |
[36] | MAYER A S,HUANG Changlin. Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method[J]. Advances in Water Resources,1999,22(8):841 − 853. doi: 10.1016/S0309-1708(98)00049-9 |
[37] | KITANIDIS P K. Quasi‐linear geostatistical theory for inversing[J]. Water Resources Research,1995,31(10):2411 − 2419. doi: 10.1029/95WR01945 |
[38] | KITANIDIS P K. Parametric estimation of covariances of regionalized variables1[J]. Journal of the American Water Resources Association,1987,23(4):557 − 567. doi: 10.1111/j.1752-1688.1987.tb00832.x |
[39] | 中华人民共和国生态环境部. 地下水环境监测技术规范:HJ 164—2020[S]. 北京:中国环境科学出版社,2020. [Ministry of Ecology and Environment of People’s Republic of China. Technical specifications for environmental monitoring of groundwater:HJ 164—2020[S]. Beijing:China Environmental Press,2020. (in Chinese)] Ministry of Ecology and Environment of People’s Republic of China. Technical specifications for environmental monitoring of groundwater: HJ 164—2020[S]. Beijing: China Environmental Press, 2020. (in Chinese) |
[40] | 兰天,焦友军,施小清,等. 观测数据权重对地下水有机污染物生物降解模型参数估计的影响[J]. 环境科学学报,2016,36(8):3040 − 3048. [LAN Tian,JIAO Youjun,SHI Xiaoqing,et al. Effect of the observation weights on model parameter estimation for biodegradation of organic containments in groundwater[J]. Acta Scientiae Circumstantiae,2016,36(8):3040 − 3048. (in Chinese with English abstract)] LAN Tian, JIAO Youjun, SHI Xiaoqing, et al. Effect of the observation weights on model parameter estimation for biodegradation of organic containments in groundwater[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 3040 − 3048. (in Chinese with English abstract) |
[41] | 杜方舟,施小清,康学远. 污染地块中NAPL相污染源存在的判定方法改进及软件开发[J]. 安全与环境工程,2022,29(5):175 − 182. [DU Fangzhou,SHI Xiaoqing,KANG Xueyuan. Improved method and software development for assessing NAPL phase presence in contaminated sites[J]. Safety and Environmental Engineering,2022,29(5):175 − 182. (in Chinese with English abstract)] DU Fangzhou, SHI Xiaoqing, KANG Xueyuan. Improved method and software development for assessing NAPL phase presence in contaminated sites[J]. Safety and Environmental Engineering, 2022, 29(5): 175 − 182. (in Chinese with English abstract) |
[42] | 宋美钰,施小清,康学远,等. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报,2023,42(2):327 − 335. [SONG Meiyu,SHI Xiaoqing,KANG Xueyuan,et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology,2023,42(2):327 − 335. (in Chinese with English abstract)] SONG Meiyu, SHI Xiaoqing, KANG Xueyuan, et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327 − 335. (in Chinese with English abstract) |
DNAPL source and plume
Technique flow chart
Methods of calculating flux concentration and resident concentration using actual sample
Site overview, monitoring well layout, and groundwater flow field
Plumes at different depths in June, 2021
Comparison of simulated values with observed values of pollutant concentration
Parameter correction results and 95% confidence interval (Prior value can be set as 0.7 when prior information of pollution source equivalent mass transfer coefficient is insufficient[31 − 32])
Field boundary flux and total residual source mass forecast and 95% confidence interval in next 5 years