Citation: | WEN Lifeng, SUN Shaobo, LI Yanlong, WANG Minxia, ZHANG Chen, TIAN Xin. Seepage control effect and sensitivity analysis of anti-seepage measures for sand-mudstone interbedded foundation[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 163-173. doi: 10.16030/j.cnki.issn.1000-3665.202312023 |
Sand-mudstone interbedded frock mass presents a typical complex geological condition, with a highly intricate seepage field distribution. Traditional seepage control analysis methods are difficult to accurately describe the behavior of the seepage field. Based on the innovative calculation method of the equivalent seepage field in the sand mudstone interlayer foundation, this study revealed the distribution pattern of the equivalent seepage field in the sand-mudstone interbedded foundation and the influence of different seepage control schemes on it. It proposed a calculation method for the equivalent seepage field of sand and mudstone interlayer foundation based on the structural characteristics of sand and mudstone interlayer foundation and the layered seepage of soil. Building upon this, a three-dimensional finite element seepage field computational model was developed for Puhua reservoir project, which incorporates the geological conditions, layout of the structure, and seepage control measures. The study investigated the influence of the permeability anisotropy of the sand-mudstone interbedded foundation on the seepage field, and analyzed the effects of different combinations of depths and lengths of impermeable curtains on the seepage flow and seepage gradient of the surrounding rock masses. The results show that when the permeable layer is not completely intercepted by the curtain, increasing the depth of the impermeable curtain can significantly reduce the seepage flow in the dam foundation and both abutment rock masses. Deepening the impermeable curtain reduces the seepage gradient at the seepage outflow point of the abutment rock masses while increasing the seepage gradient at the dam foundation and the impermeable curtain. Lengthening the impermeable curtain can reduce the seepage flow and seepage gradient of both abutment rock masses. Increasing the curtain length primarily affects the seepage flow field on the side where the curtain is extended, but further improvements in seepage control become less significant as the curtain lengthens. The seepage of sand-mudstone interbedded foundation exhibits anisotropic characteristics, and the seepage flow of the foundation can be effectively controlled by setting a reasonable depth and length of anti-seepage curtain. This study provides valuable insights for selecting seepage control measures on sand-mudstone interbedded foundations.
[1] | 高全新. 鸭儿沟水库两坝肩渗漏勘察方法及几点想法[J]. 陕西水利,2013(3):81 − 83. [GAO Quanxin. Exploration method and several thoughts on leakage of two dam shoulders in Yaergou reservoir[J]. Shaanxi Water Resources,2013(3):81 − 83. (in Chinese with English abstract)] doi: 10.3969/j.issn.1673-9000.2013.03.039 GAO Quanxin. Exploration method and several thoughts on leakage of two dam shoulders in Yaergou reservoir[J]. Shaanxi Water Resources, 2013(3): 81 − 83. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-9000.2013.03.039 |
[2] | 徐勇. 白龙潭水库工程地质问题评价分析[J]. 河南水利与南水北调,2022,51(8):63 − 64. [XU Yong. Evaluation and analysis of engineering geological problems of Baishongtan Reservoir[J]. Henan Water Resources and South-to-North Water Diversion,2022,51(8):63 − 64. (in Chinese with English abstract)] doi: 10.3969/j.issn.1673-8853.2022.08.033 XU Yong. Evaluation and analysis of engineering geological problems of Baishongtan Reservoir[J]. Henan Water Resources and South-to-North Water Diversion, 2022, 51(8): 63 − 64. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-8853.2022.08.033 |
[3] | 冯峰. 延安市红庄水库单薄山梁帷幕防渗处理浅析[J]. 山西建筑,2010,36(26):364 − 365. [FENG Feng. On analysis of impervious curtain treatment of thin mountain ridges in Hongzhuang reservoir in Yan’an[J]. Shanxi Architecture,2010,36(26):364 − 365. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-6825.2010.26.236 FENG Feng. On analysis of impervious curtain treatment of thin mountain ridges in Hongzhuang reservoir in Yan’an[J]. Shanxi Architecture, 2010, 36(26): 364 − 365. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6825.2010.26.236 |
[4] | 林诗哲,胡新丽,张海燕,等. 白鹤滩水电站库区红层砂岩干湿循环下结构劣化及渗透性演化规律[J]. 中国地质灾害与防治学报,2024,35(5):67 − 77. [LIN Shizhe,HU Xinli,ZHANG Haiyan,et al. Structural degradation and permeability evolution of red sandstone undeldry-wet cycles in the Baihetan hydropower station reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5):67 − 77. (in Chinese with English abstract)] LIN Shizhe, HU Xinli, ZHANG Haiyan, et al. Structural degradation and permeability evolution of red sandstone undeldry-wet cycles in the Baihetan hydropower station reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 67 − 77. (in Chinese with English abstract) |
[5] | 甘彬. 桂西南红层工程地质特性及工程效应研究——以驮英水库及灌区工程为例[J]. 广西水利水电,2023(3):14 − 18. [GAN bin. Study of engineering geological characteristics and engineering effects of red bed in Southwest Guangxi[J]. Guangxi Water Resources & Hydropower Engineering,2023(3):14 − 18.(in Chinese with English abstract)] GAN bin. Study of engineering geological characteristics and engineering effects of red bed in Southwest Guangxi[J]. Guangxi Water Resources & Hydropower Engineering, 2023(3): 14 − 18.(in Chinese with English abstract) |
[6] | 王珂,戴俊生,冯阵东,等. 砂泥岩间互地层等效岩石力学参数计算模型及其应用[J]. 地质力学学报,2013,19(2):143 − 151. [WANG Ke,DAI Junsheng,FENG Zhendong,et al. Calculating model of equivalent rock mechanical parameters of Sand-Mud interbed and its application[J]. Journal of Geomechanics,2013,19(2):143 − 151. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-6616.2013.02.004 WANG Ke, DAI Junsheng, FENG Zhendong, et al. Calculating model of equivalent rock mechanical parameters of Sand-Mud interbed and its application[J]. Journal of Geomechanics, 2013, 19(2): 143 − 151. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2013.02.004 |
[7] | 袁泉,薛炳勇,谭彩,等. 层状岩体单轴抗压强度的速率效应力学特性研究[J]. 矿业研究与开发,2019,39(8):58 − 62. [YUAN Quan,XUE Bingyong,TAN Cai,et al. Study on the rate effect mechanical properties of uniaxial compressive strength of layered rock mass[J]. Mining Research and Development,2019,39(8):58 − 62. (in Chinese with English abstract)] YUAN Quan, XUE Bingyong, TAN Cai, et al. Study on the rate effect mechanical properties of uniaxial compressive strength of layered rock mass[J]. Mining Research and Development, 2019, 39(8): 58 − 62. (in Chinese with English abstract) |
[8] | 崔华龙,叶四桥. 层厚比对水平砂泥岩互层岩体抗剪强度参数的影响[J]. 水文地质工程地质,2018,45(6):78 − 83. [CUI Hualong,YE Siqiao. Effect of different thickness ratio of horizontal interbedded mudstone and sandstone layers on shear strength parameters[J]. Hydrogeology & Engineering Geology,2018,45(6):78 − 83. (in Chinese with English abstract)] CUI Hualong, YE Siqiao. Effect of different thickness ratio of horizontal interbedded mudstone and sandstone layers on shear strength parameters[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 78 − 83. (in Chinese with English abstract) |
[9] | 高永青,刘建锋,林庆元,等. 微风化红层砂泥岩动三轴力学特性试验研究[J]. 力学与实践,2023,45(5):981 − 989. [GAO Yongqing,LIU Jianfeng,LIN Qingyuan,et al. Experimental study on dynamic triaxial mechanical properties of sand and mudstone in breezy red bed[J]. Mechanics in Engineering,2023,45(5):981 − 989. (in Chinese with English abstract)] doi: 10.6052/1000-0879-23-397 GAO Yongqing, LIU Jianfeng, LIN Qingyuan, et al. Experimental study on dynamic triaxial mechanical properties of sand and mudstone in breezy red bed[J]. Mechanics in Engineering, 2023, 45(5): 981 − 989. (in Chinese with English abstract) doi: 10.6052/1000-0879-23-397 |
[10] | 邓威,肖世国. 含裂隙近水平红层软岩边坡渗透稳定性模型试验[J]. 水文地质工程地质,2024,51(1):57 − 68. [DENG Wei,XIAO Shiguo. Model test on stability of soft rock slopes composed of nearly horizontal redbeds with cracks[J]. Hydrogeology & Engineering Geology,2024,51(1):57 − 68. (in Chinese with English abstract)] DENG Wei, XIAO Shiguo. Model test on stability of soft rock slopes composed of nearly horizontal redbeds with cracks[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 57 − 68. (in Chinese with English abstract) |
[11] | 陈洋,唐洪明,廖纪佳,等. 基于埋深变化的川南龙马溪组页岩孔隙特征及控制因素分析[J]. 中国地质,2022,49(2):472 − 484. [CHEN Yang,TANG Hongming,LIAO Jijia,et al. Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation,Southern Sichuan Basin[J]. Geology in China,2022,49(2):472 − 484. (in Chinese with English abstract)] doi: 10.12029/gc20220209 CHEN Yang, TANG Hongming, LIAO Jijia, et al. Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation, Southern Sichuan Basin[J]. Geology in China, 2022, 49(2): 472 − 484. (in Chinese with English abstract) doi: 10.12029/gc20220209 |
[12] | 马河图. 三峡库区砂泥岩互层岸坡崩塌机制及稳定性分析[D]. 重庆:重庆交通大学,2019. [MA Hetu. Collapse mechanism and stability analysis of sand-mudstone interbedded bank slope in the Three Gorges Reservoir Area[D]. Chongqing:Chongqing Jiaotong University,2019. (in Chinese with English abstract)] MA Hetu. Collapse mechanism and stability analysis of sand-mudstone interbedded bank slope in the Three Gorges Reservoir Area[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese with English abstract) |
[13] | 张钧堂,王俊杰,姬雪竹,等. 浸水时间对砂泥岩颗粒混合料抗剪强度的影响[J]. 水电能源科学,2016,34(5):157 − 159. [ZHANG Juntang,WANG Junjie,JI Xuezhu,et al. Influence of soaked time on shear strength of sandstone-mudstone particle mixture[J]. Water Resources and Power,2016,34(5):157 − 159. (in Chinese with English abstract)] ZHANG Juntang, WANG Junjie, JI Xuezhu, et al. Influence of soaked time on shear strength of sandstone-mudstone particle mixture[J]. Water Resources and Power, 2016, 34(5): 157 − 159. (in Chinese with English abstract) |
[14] | 王俊智,李清波,王贵军,等. 近水平层状坝基岩体渗透结构及其工程意义[J]. 水文地质工程地质,2022,49(1):12 − 19. [WANG Junzhi,LI Qingbo,WANG Guijun,et al. Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance[J]. Hydrogeology & Engineering Geology,2022,49(1):12 − 19. (in Chinese with English abstract)] WANG Junzhi, LI Qingbo, WANG Guijun, et al. Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 12 − 19. (in Chinese with English abstract) |
[15] | 蒋小伟,万力,胡晓农. 基于压水试验数据的砂泥岩裂隙岩体渗透结构分析[J]. 自然科学进展,2008,18(3):355 − 360. [JIANG Xiaowei,WAN Li,HU Xiaonong. Analysis of permeability structure of sandstone fractured rock mass based on pressurized water test data[J]. Progress in Natural Science,2008,18(3):355 − 360. (in Chinese with English abstract)] doi: 10.3321/j.issn:1002-008X.2008.03.016 JIANG Xiaowei, WAN Li, HU Xiaonong. Analysis of permeability structure of sandstone fractured rock mass based on pressurized water test data[J]. Progress in Natural Science, 2008, 18(3): 355 − 360. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-008X.2008.03.016 |
[16] | 蒋小伟,万力,胡晓农. 砂泥岩裂隙岩体埋深和岩性对渗透性影响分析[J]. 水科学进展,2008,19(4):574 − 580. [JIANG Xiaowei,WAN Li,HU Xiaonong. Variation of permeability with depth and lithology in a formation of fractured sandstone-mudstone media[J]. Advances in Water Science,2008,19(4):574 − 580. (in Chinese with English abstract)] doi: 10.3321/j.issn:1001-6791.2008.04.019 JIANG Xiaowei, WAN Li, HU Xiaonong. Variation of permeability with depth and lithology in a formation of fractured sandstone-mudstone media[J]. Advances in Water Science, 2008, 19(4): 574 − 580. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-6791.2008.04.019 |
[17] | 许强,唐然. 红层及其地质灾害研究[J]. 岩石力学与工程学报,2023,42(1):28 − 50. [XU Qiang,TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):28 − 50. (in Chinese with English abstract)] XU Qiang, TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 28 − 50. (in Chinese with English abstract) |
[18] | 郑冲泉. 德泽水库大坝防渗工程耗灰量异常原因分析[J]. 水利水电技术,2020,51(增刊1):108 − 113. [ZHENG Chongquan. Analysis on causation of abnormal cement consumption of seepage control project for dam of Deze Reservoir[J]. Water Resources and Hydropower Engineering,2020,51(Sup1):108 − 113. (in Chinese with English abstract)] ZHENG Chongquan. Analysis on causation of abnormal cement consumption of seepage control project for dam of Deze Reservoir[J]. Water Resources and Hydropower Engineering, 2020, 51(Sup1): 108 − 113. (in Chinese with English abstract) |
[19] | 康小兵,许模,夏强,等. 四川红层区某水库坝址渗漏影响因素[J]. 成都理工大学学报(自然科学版),2018,45(5):633 − 639. [KANG Xiaobing,XU Mo,XIA Qiang,et al. Study on reservoir dam site leakage in Sichuan red layer area,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2018,45(5):633 − 639. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-9727.2018.05.13 KANG Xiaobing, XU Mo, XIA Qiang, et al. Study on reservoir dam site leakage in Sichuan red layer area, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(5): 633 − 639. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2018.05.13 |
[20] | 李苏航,苏玉婷,张群,等. 黄河羊曲水电站面板堆石坝三维有限元渗流分析[J]. 西北水电,2021(2):68 − 72. [LI Suhang,SU Yuting,ZHANG Qun,et al. Three-dimensional finite element seepage analysis of CFRD of Yangqu Hydropower Station on the Yellow River[J]. Northwest Hydropower,2021(2):68 − 72. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2610.2021.02.014 LI Suhang, SU Yuting, ZHANG Qun, et al. Three-dimensional finite element seepage analysis of CFRD of Yangqu Hydropower Station on the Yellow River[J]. Northwest Hydropower, 2021(2): 68 − 72. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2610.2021.02.014 |
[21] | 高焕焕,齐小斌,高文静,等. 基于原型观测的黑河黏土心墙土石坝渗流场评价[J]. 西北水电,2021(4):43 − 47. [GAO Huanhuan,QI Xiaobin,GAO Wenjing,et al. Evaluation of seepage field of Heihe clay core earth-rock dam based on prototype monitoring data[J]. Northwest Hydropower,2021(4):43 − 47. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2610.2021.04.010 GAO Huanhuan, QI Xiaobin, GAO Wenjing, et al. Evaluation of seepage field of Heihe clay core earth-rock dam based on prototype monitoring data[J]. Northwest Hydropower, 2021(4): 43 − 47. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2610.2021.04.010 |
[22] | 曲传勇. 大西沟粘土心墙坝运行期渗流及沉降监测分析[J]. 西北水电,2021(3):95 − 98. [QU Chuanyong. Analysis of seepage and settlement monitoring of Daxigou clay core dam during operation[J]. Northwest Hydropower,2021(3):95 − 98. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2610.2021.03.020 QU Chuanyong. Analysis of seepage and settlement monitoring of Daxigou clay core dam during operation[J]. Northwest Hydropower, 2021(3): 95 − 98. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2610.2021.03.020 |
[23] | 廖军,龚洪苇,石磊,等. 降雨作用下近水平红层公路高边坡渗流场特征研究[J]. 水力发电,2020,46(10):47 − 51. [LIAO Jun,GONG Hongwei,SHI Lei,et al. Study on the characteristics of seepage field of high slope of near-horizontal red layer highway under rainfall[J]. Water Power,2020,46(10):47 − 51. (in Chinese with English abstract)] doi: 10.3969/j.issn.0559-9342.2020.10.011 LIAO Jun, GONG Hongwei, SHI Lei, et al. Study on the characteristics of seepage field of high slope of near-horizontal red layer highway under rainfall[J]. Water Power, 2020, 46(10): 47 − 51. (in Chinese with English abstract) doi: 10.3969/j.issn.0559-9342.2020.10.011 |
[24] | 师文豪,杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版),2021,51(6):1783 − 1788. [SHI Wenhao,YANG Tianhong. Numerical simulation on anisotropic seepage characteristics in dip layered rock slope with interaction of seepage and stress[J]. Journal of Jilin University(Earth Science Edition),2021,51(6):1783 − 1788. (in Chinese with English abstract)] SHI Wenhao, YANG Tianhong. Numerical simulation on anisotropic seepage characteristics in dip layered rock slope with interaction of seepage and stress[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1783 − 1788. (in Chinese with English abstract) |
[25] | 邱珍锋. 砂泥岩混合料各向异性渗透特性试验研究[D]. 重庆:重庆交通大学,2013. [QIU Zhenfeng. Experimental study on anisotropic permeability of sand mudstone mixture[D]. Chongqing:Chongqing Jiaotong University,2013. (in Chinese with English abstract)] QIU Zhenfeng. Experimental study on anisotropic permeability of sand mudstone mixture[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese with English abstract) |
[26] | XU Zengguang,CAO Cheng,LI Kanghong,et al. Simulation of drainage hole arrays and seepage control analysis of the Qingyuan Pumped Storage Power Station in China:A case study[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):6335 − 6346. doi: 10.1007/s10064-019-01527-w |
[27] | XU Zengguang,LIU Yang,HUANG Jing,et al. Performance assessment of the complex seepage-control system at the Lu Dila Hydropower Station in China[J]. International Journal of Geomechanics,2019,19(3):5019001. doi: 10.1061/(ASCE)GM.1943-5622.0001363 |
[28] | 祁涛,张均锋. 某水电站坝址区三维渗流参数反演[J]. 岩石力学与工程学报,2005,24(20):3766 − 3770. [QI Tao,ZHANG Junfeng. Inverse analysis of seepage parameters for dam fundation of a hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(20):3766 − 3770. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2005.20.026 QI Tao, ZHANG Junfeng. Inverse analysis of seepage parameters for dam fundation of a hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(20): 3766 − 3770. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.20.026 |
[29] | 许增光,曹成,李康宏,等. 某抽水蓄能电站上水库局部防渗渗控分析[J]. 应用力学学报,2018,35(2):417 − 422. [XU Zengguang,CAO Cheng,LI Kanghong,et al. Analysis of local anti-seepage and seepage control in the upper reservoir of a pumped storage power station[J]. Chinese Journal of Applied Mechanics,2018,35(2):417 − 422. (in Chinese with English abstract)] XU Zengguang, CAO Cheng, LI Kanghong, et al. Analysis of local anti-seepage and seepage control in the upper reservoir of a pumped storage power station[J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 417 − 422. (in Chinese with English abstract) |
[30] | 段斌,张林,何江达,等. 复杂裂隙岩体天然渗流场反演分析[J]. 水力发电学报,2012,31(3):188 − 193. [DUAN Bin,ZHANG Lin,HE Jiangda,et al. Back analysis of natural seepage field in complicated fractured rock mass[J]. Journal of Hydroelectric Engineering,2012,31(3):188 − 193. (in Chinese with English abstract)] DUAN Bin, ZHANG Lin, HE Jiangda, et al. Back analysis of natural seepage field in complicated fractured rock mass[J]. Journal of Hydroelectric Engineering, 2012, 31(3): 188 − 193. (in Chinese with English abstract) |
Schematic diagram of sand mudstone interbedded seepage
Layout of project hub
Engineering geological profile of dam axis
Finite element simulating calculation
Comparison of measured and inversed water levels by drill
Contour map of typical section head
Changes in seepage flow with curtain depth
Changes in hydraulic gradient with curtain depth
Changes in seepage discharge with curtain length on the left bank
Changes in hydraulic gradient with curtain length on left bank
Changes in seepage discharge with curtain length on the right bank
Changes in hydraulic gradient with curtain length on right bank