2025 Vol. 52, No. 3
Article Contents

HAN Changyu, CHEN Wenchao, ZHANG Min, JIN Li, WANG Zhe, YANG Zhenxing. Migration characteristics of landslide considering particle morphology[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 234-244. doi: 10.16030/j.cnki.issn.1000-3665.202310021
Citation: HAN Changyu, CHEN Wenchao, ZHANG Min, JIN Li, WANG Zhe, YANG Zhenxing. Migration characteristics of landslide considering particle morphology[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 234-244. doi: 10.16030/j.cnki.issn.1000-3665.202310021

Migration characteristics of landslide considering particle morphology

More Information
  • Considering the particle morphology of geotechnical materials is essential for accurately assessing slope stability and predicting landslide migration. However, the influence of particle morphology on large-scale slope stability and landslide dynamics remains unclear. To reveal the impact of particle morphology on slope stability and landslide migration characteristics, a two-dimensional slopes of varied particle morphology were constructed using the particle discrete unit method, based on real-world engineering landslide. Two particle morphology parameters, sphericity and angularity, were used to characterize the overall contour characteristics and number of edges of the particles, respectively, and the effects of particle size scaling and particle morphology on the slope stability coefficient were investigated. With the slope damaged by intensity reduction, the migration characteristics of the landslide body were further analyzed. The results show that, in respect of engineering scale landslide, particle size scaling presents a threshold of impact on slope safety factor prediction. Particle sphericity is inversely proportional to slope safety factor, whereas angularity is proportional to slope safety factor, and particle spherical degree is proportional to the average sliding velocity of landslide. The migration area of landslide is affected by the morphology of particles, with a higher sphericity of particles leading to a larger migration area. The difference in energy dissipation characteristics caused by particle morphology is the main internal cause of the change of landslide migration scope and accumulation state. This study can provide basic information for landslide disaster scope prediction and disaster prevention and mitigation engineering.

  • 加载中
  • [1] 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]

    Google Scholar

    YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)

    Google Scholar

    [2] GUO Deping,HAMADA M,HE Chuan,et al. An empirical model for landslide travel distance prediction in Wenchuan earthquake area[J]. Landslides,2014,11(2):281 − 291. doi: 10.1007/s10346-013-0444-y

    CrossRef Google Scholar

    [3] 王震宇,孟陆波. 滑坡预报的多元回归分析方法[J]. 中国地质灾害与防治学报,2003,14(3):21 − 23. [WANG Zhenyu,MENG Lubo. The multivariate regression analysis method for landslide prediction[J]. The Chinese Journal of Geological Hazard and Control,2003,14(3):21 − 23. (in Chinese with English abstract)]

    Google Scholar

    WANG Zhenyu, MENG Lubo. The multivariate regression analysis method for landslide prediction[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(3): 21 − 23. (in Chinese with English abstract)

    Google Scholar

    [4] 唐然,许强,吴斌,等. 平推式滑坡运动距离计算模型[J]. 岩土力学,2018,39(3):1009 − 1019. [TANG Ran,XU Qiang,WU Bin,et al. Method of sliding distance calculation for translational landslides[J]. Rock and Soil Mechanics,2018,39(3):1009 − 1019. (in Chinese with English abstract)]

    Google Scholar

    TANG Ran, XU Qiang, WU Bin, et al. Method of sliding distance calculation for translational landslides[J]. Rock and Soil Mechanics, 2018, 39(3): 1009 − 1019. (in Chinese with English abstract)

    Google Scholar

    [5] SU Xing,WEI Wanhong,YE Weilin,et al. Predicting landslide sliding distance based on energy dissipation and mass point kinematics[J]. Natural Hazards,2019,96(3):1367 − 1385. doi: 10.1007/s11069-019-03618-z

    CrossRef Google Scholar

    [6] MAO Jia,LIU Xunnan,ZHANG Chong,et al. Runout prediction and deposit characteristics investigation by the distance potential-based discrete element method:The 2018 Baige landslides,Jinsha River,China[J]. Landslides,2021,18(1):235 − 249. doi: 10.1007/s10346-020-01501-8

    CrossRef Google Scholar

    [7] 王高峰,李浩,田运涛,等. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测[J]. 岩石力学与工程学报,2023,42(4):1003 − 1018. [WANG Gaofeng,LI Hao,TIAN Yuntao,et al. Study on the formation mechanism and risk prediction of high-level accumulation landslides in Bailongjiang River Basin,Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(4):1003 − 1018. (in Chinese with English abstract)]

    Google Scholar

    WANG Gaofeng, LI Hao, TIAN Yuntao, et al. Study on the formation mechanism and risk prediction of high-level accumulation landslides in Bailongjiang River Basin, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 1003 − 1018. (in Chinese with English abstract)

    Google Scholar

    [8] WANG Jian,HU Xinli,ZHENG Hongchao,et al. Energy transfer mechanisms of mobility alteration in landslide-debris flows controlled by entrainment and runout-path terrain:A case study[J]. Landslides,2024,21(6):1189 − 1206. doi: 10.1007/s10346-024-02221-z

    CrossRef Google Scholar

    [9] 岳中琦. 梅大高速公路路基边坡失稳条件与滑坡机理初探[J]. 中国地质灾害与防治学报,2024,35(4):1 − 12. [YUE Zhongqi. Study on the instability condition and landslide mechanism of subgrade slope in Mei–Da Expressway[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):1 − 12.(in Chinese with English abstract)]

    Google Scholar

    YUE Zhongqi. Study on the instability condition and landslide mechanism of subgrade slope in Mei–Da Expressway[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 1 − 12.(in Chinese with English abstract)

    Google Scholar

    [10] MANZELLA I,LABIOUSE V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches[J]. Engineering Geology,2009,109(1/2):146 − 158.

    Google Scholar

    [11] YANG Qingqing,CAI Fei,UGAI K,et al. Some factors affecting mass-front velocity of rapid dry granular flows in a large flume[J]. Engineering Geology,2011,122(3/4):249 − 260.

    Google Scholar

    [12] 龙艳梅,宋章,王玉峰,等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质,2022,49(1):126 − 136. [LONG Yanmei,SONG Zhang,WANG Yufeng,et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology,2022,49(1):126 − 136. (in Chinese with English abstract)]

    Google Scholar

    LONG Yanmei, SONG Zhang, WANG Yufeng, et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 126 − 136. (in Chinese with English abstract)

    Google Scholar

    [13] 雷先顺,谢沃,卢坤林,等. 无黏性土滑动和堆积特性的模型试验研究[J]. 岩土工程学报,2016,38(2):226 − 236. [LEI Xianshun,XIE Wo,LU Kunlin,et al. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering,2016,38(2):226 − 236. (in Chinese with English abstract)]

    Google Scholar

    LEI Xianshun, XIE Wo, LU Kunlin, et al. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 226 − 236. (in Chinese with English abstract)

    Google Scholar

    [14] HAN Changyu, WANG Jianhua, XIA Xiaohe, et al. Limit analysis for local and overall stability of a slurry trench in cohesive soil[J]. International Journal of Geomechanics,2015,15(5):06014026.

    Google Scholar

    [15] HAN Changyu, CHEN Jinjian, XIA Xiaohe, et al. Three-dimensional stability analysis of anisotropic and non-homogeneous slopes using limit analysis[J]. Journal of Central South University,2014,21(3):1142 − 1147.

    Google Scholar

    [16] HAN Changyu, HAO Yidan, LIU Kun, et al. Analysis of influencing factors of rainfall infiltration slope sensitivity based on grey relational analysis[J]. Polish Journal of Environmental Studies,2025,34(1):671 − 679.

    Google Scholar

    [17] 汪华斌,李建梅,金怡轩,等. 降雨诱发边坡破坏数值模拟两个关键问题的解决方法[J]. 岩土力学,2019,40(2):777 − 784. [WANG Huabin,LI Jianmei,JIN Yixuan,et al. The numerical methods for two key problems in rainfall-induced slope failure[J]. Rock and Soil Mechanics,2019,40(2):777 − 784. (in Chinese with English abstract)]

    Google Scholar

    WANG Huabin, LI Jianmei, JIN Yixuan, et al. The numerical methods for two key problems in rainfall-induced slope failure[J]. Rock and Soil Mechanics, 2019, 40(2): 777 − 784. (in Chinese with English abstract)

    Google Scholar

    [18] 张恩铭,程谦恭,林棋文,等. 岩体结构对岩质滑坡运动过程和堆积特征的影响研究[J]. 水文地质工程地质,2022,49(3):125 − 135. [ZHANG Enming,CHENG Qiangong,LIN Qiwen,et al. A study of the influence of rock mass structure on the propagation processes and deposit characteristics of rockslides[J]. Hydrogeology & Engineering Geology,2022,49(3):125 − 135. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Enming, CHENG Qiangong, LIN Qiwen, et al. A study of the influence of rock mass structure on the propagation processes and deposit characteristics of rockslides[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 125 − 135. (in Chinese with English abstract)

    Google Scholar

    [19] 陶志刚,张海江,尹利洁,等. 基于FDEM的戒台寺古滑体开裂破坏过程数值模拟[J]. 水文地质工程地质,2017,44(3):105 − 112. [TAO Zhigang,ZHANG Haijiang,YIN Lijie,et al. Numerical modeling of cracking for the Jietai Temple ancient landslide with the combined finite-discrete element method[J]. Hydrogeology & Engineering Geology,2017,44(3):105 − 112. (in Chinese with English abstract)]

    Google Scholar

    TAO Zhigang, ZHANG Haijiang, YIN Lijie, et al. Numerical modeling of cracking for the Jietai Temple ancient landslide with the combined finite-discrete element method[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 105 − 112. (in Chinese with English abstract)

    Google Scholar

    [20] 张家勇,邹银先,杨大山. 基于PFC3D的鱼鳅坡滑坡运动过程分析[J]. 中国地质灾害与防治学报,2021,32(4):33 − 39. [ZHANG Jiayong,ZOU Yinxian,YANG Dashan. Analysis of Yuqiupo landslide motion process based on PFC3D[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):33 − 39. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Jiayong, ZOU Yinxian, YANG Dashan. Analysis of Yuqiupo landslide motion process based on PFC3D[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 33 − 39. (in Chinese with English abstract)

    Google Scholar

    [21] BANTON J,VILLARD P,JONGMANS D,et al. Two-dimensional discrete element models of debris avalanches:Parameterization and the reproducibility of experimental results[J]. Journal of Geophysical Research:Earth Surface,2009,114:F04013.

    Google Scholar

    [22] MEAD S R,CLEARY P W. Validation of DEM prediction for granular avalanches on irregular terrain[J]. Journal of Geophysical Research:Earth Surface,2015,120(9):1724 − 1742. doi: 10.1002/2014JF003331

    CrossRef Google Scholar

    [23] ZHANG Yulong,SHAO Jianfu,LIU Zaobao,et al. Numerical study on the dynamic behavior of rock avalanche:Influence of cluster shape,size and gradation[J]. Acta Geotechnica,2023,18(1):299 − 318. doi: 10.1007/s11440-022-01537-1

    CrossRef Google Scholar

    [24] 刘清秉,项伟,BUDHU M,等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学,2011,32(增刊1):190 − 197. [LIU Qingbing,XIANG Wei,BUDHU M,et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics,2011,32(Sup1):190 − 197. (in Chinese with English abstract)]

    Google Scholar

    LIU Qingbing, XIANG Wei, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 2011, 32(Sup1): 190 − 197. (in Chinese with English abstract)

    Google Scholar

    [25] HENTSCHEL M L,PAGE N W. Selection of descriptors for particle shape characterization[J]. Particle & Particle Systems Characterization,2003,20(1):25 − 38.

    Google Scholar

    [26] WADELL H. Volume,shape,and roundness of rock particles[J]. The Journal of Geology,1932,40(5):443 − 451. doi: 10.1086/623964

    CrossRef Google Scholar

    [27] WADELL H. Sphericity and roundness of rock particles[J]. The Journal of Geology,1933,41(3):310 − 331. doi: 10.1086/624040

    CrossRef Google Scholar

    [28] ALTUHAFI F,O'SULLIVAN C,CAVARRETTA I. Analysis of an image-based method to quantify the size and shape of sand particles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(8):1290 − 1307. doi: 10.1061/(ASCE)GT.1943-5606.0000855

    CrossRef Google Scholar

    [29] ZHAO Yu,DUAN Yihang,ZHU Lingli,et al. Characterization of coarse aggregate morphology and its effect on rheological and mechanical properties of fresh concrete[J]. Construction and Building Materials,2021,286:122940. doi: 10.1016/j.conbuildmat.2021.122940

    CrossRef Google Scholar

    [30] 赵尚毅,郑颖人,时卫民,等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报,2002(3):343 − 346. [ZHAO Shangyi,ZHENG Yingren,SHI Weimin,et al. Finding the stability safety factor of slope by finite element strength reduction method[J]. Chinese Journal of Geotechnical Engineering,2002(3):343 − 346. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Shangyi, ZHENG Yingren, SHI Weimin, et al. Finding the stability safety factor of slope by finite element strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2002(3): 343 − 346. (in Chinese with English abstract)

    Google Scholar

    [31] 周健,王家全,曾远,等. 颗粒流强度折减法和重力增加法的边坡安全系数研究[J]. 岩土力学,2009,30(6):1549 − 1554. [ZHOU Jian,WANG Jiaquan,ZENG Yuan,et al. Slope safety factor by methods of particle flow code strength reduction and gravity increase[J]. Rock and Soil Mechanics,2009,30(6):1549 − 1554. (in Chinese with English abstract)]

    Google Scholar

    ZHOU Jian, WANG Jiaquan, ZENG Yuan, et al. Slope safety factor by methods of particle flow code strength reduction and gravity increase[J]. Rock and Soil Mechanics, 2009, 30(6): 1549 − 1554. (in Chinese with English abstract)

    Google Scholar

    [32] 陈晓,石崇,杨俊雄. 土石混合体边坡细观特征对滑面形成影响研究[J]. 工程地质学报,2020,28(4):813 − 821. [CHEN Xiao,SHI Chong,YANG Junxiong. Effect of micro characteristics of soil-rock mixture slope on formation of sliding surface[J]. Journal of Engineering Geology,2020,28(4):813 − 821. (in Chinese with English abstract)]

    Google Scholar

    CHEN Xiao, SHI Chong, YANG Junxiong. Effect of micro characteristics of soil-rock mixture slope on formation of sliding surface[J]. Journal of Engineering Geology, 2020, 28(4): 813 − 821. (in Chinese with English abstract)

    Google Scholar

    [33] 王培涛,杨天鸿,朱立凯,等. 基于PFC2D岩质边坡稳定性分析的强度折减法[J]. 东北大学学报(自然科学版),2013,34(1):127 − 130. [WANG Peitao,YANG Tianhong,ZHU Likai,et al. Strength reduction method for rock slope stability analysis based on PFC2D[J]. Journal of Northeastern University(Natural Science),2013,34(1):127 − 130. (in Chinese with English abstract)]

    Google Scholar

    WANG Peitao, YANG Tianhong, ZHU Likai, et al. Strength reduction method for rock slope stability analysis based on PFC2D[J]. Journal of Northeastern University(Natural Science), 2013, 34(1): 127 − 130. (in Chinese with English abstract)

    Google Scholar

    [34] 汪儒鸿,周海清,彭国园. 土体结构性对突发性边坡失稳的控制作用[J]. 中国地质灾害与防治学报,2018,29(5):20 − 25. [WANG Ruhong,ZHOU Haiqing,PENG Guoyuan. Analysis of the sudden slope instability controlled by the soil structure[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):20 − 25. (in Chinese with English abstract)]

    Google Scholar

    WANG Ruhong, ZHOU Haiqing, PENG Guoyuan. Analysis of the sudden slope instability controlled by the soil structure[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 20 − 25. (in Chinese with English abstract)

    Google Scholar

    [35] 曹文,李维朝,唐斌,等. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报,2017,25(2):455 − 462. [CAO Wen,LI Weichao,TANG Bin,et al. PFC study on building of 2d and 3d landslide models[J]. Journal of Engineering Geology,2017,25(2):455 − 462. (in Chinese with English abstract)]

    Google Scholar

    CAO Wen, LI Weichao, TANG Bin, et al. PFC study on building of 2d and 3d landslide models[J]. Journal of Engineering Geology, 2017, 25(2): 455 − 462. (in Chinese with English abstract)

    Google Scholar

    [36] POTYONDY D O,CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329 − 1364. doi: 10.1016/j.ijrmms.2004.09.011

    CrossRef Google Scholar

    [37] 胡新丽,唐辉明,李长冬,等. 基于参数反演的保扎滑坡变形破坏机理研究[J]. 工程地质学报,2011,19(6):795 − 801. [HU Xinli,TANG Huiming,LI Changdong,et al. Deformation mechanism of Baozha landslide with parametric back analysis[J]. Journal of Engineering Geology,2011,19(6):795 − 801. (in Chinese with English abstract)]

    Google Scholar

    HU Xinli, TANG Huiming, LI Changdong, et al. Deformation mechanism of Baozha landslide with parametric back analysis[J]. Journal of Engineering Geology, 2011, 19(6): 795 − 801. (in Chinese with English abstract)

    Google Scholar

    [38] 屈昊. 陕西西镇高速公路杨家河滑坡稳定性评价及失稳过程分析[D]. 西安:西安科技大学,2020. [QU Hao. The stable evaluation of the stability of and the analysis of instability on Yangjiahe Landslide beside the highway of Xizhen,Shaanxi Province[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)]

    Google Scholar

    QU Hao. The stable evaluation of the stability of and the analysis of instability on Yangjiahe Landslide beside the highway of Xizhen, Shaanxi Province[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)

    Google Scholar

    [39] 浙江省第七地质大队. 丽水市莲都区雅溪镇里东村滑坡勘查报告[R]. 丽水:浙江省第七地质大队,2016. [The Seventh Geological Brigade of Zhejiang Province. Landslide investigation report of Lidong Village,Yaxi Town,Liandu District,Lishui City[R]. Lishui:The Seventh Geological Brigade of Zhejiang Province,2016. (in Chinese)]

    Google Scholar

    The Seventh Geological Brigade of Zhejiang Province. Landslide investigation report of Lidong Village, Yaxi Town, Liandu District, Lishui City[R]. Lishui: The Seventh Geological Brigade of Zhejiang Province, 2016. (in Chinese)

    Google Scholar

    [40] 张翀,舒赣平. 颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J]. 岩土工程学报,2009,31(8):1281 − 1286. [ZHANG Chong,SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering,2009,31(8):1281 − 1286. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Chong, SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1281 − 1286. (in Chinese with English abstract)

    Google Scholar

    [41] WU Mengmeng,XIONG Linghong,WANG Jianfeng. DEM study on effect of particle roundness on biaxial shearing of sand[J]. Underground Space,2021,6(6):678 − 694. doi: 10.1016/j.undsp.2021.03.006

    CrossRef Google Scholar

    [42] 张旭辉,龚晓南,徐日庆. 边坡稳定影响因素敏感性的正交法计算分析[J]. 中国公路学报,2003,16(1):36 − 39. [ZHANG Xuhui,GONG Xiaonan,XU Riqing. Orthogonality analysis method of sensibility on factor of slope stability[J]. China Journal of Highway and Transport,2003,16(1):36 − 39. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Xuhui, GONG Xiaonan, XU Riqing. Orthogonality analysis method of sensibility on factor of slope stability[J]. China Journal of Highway and Transport, 2003, 16(1): 36 − 39. (in Chinese with English abstract)

    Google Scholar

    [43] CLEARY P W. Industrial particle flow modelling using discrete element method[J]. Engineering Computations,2009,26(6):698 − 743. doi: 10.1108/02644400910975487

    CrossRef Google Scholar

    [44] 孔亮,彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报,2011,30(10):2112 − 2119. [KONG Liang,PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2112 − 2119. (in Chinese with English abstract)]

    Google Scholar

    KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112 − 2119. (in Chinese with English abstract)

    Google Scholar

    [45] IVERSON R M,LOGAN M,DENLINGER R P. Granular avalanches across irregular three-dimensional terrain:2. Experimental tests[J]. Journal of Geophysical Research:Earth Surface,2004,109(F1):F01015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(93) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint