2024 Vol. 51, No. 4
Article Contents

LIAO Songlin, MA Shijia, XIA Changyou, GAO Zhihao, LIU Muxin, LIANG Xi, DAI Qing, HUANG Xinwo, JIANG Zeyuan, YU Bingqing. Research on monitoring methods and technical systems of CO2 mineralization in basalt formation[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 41-52. doi: 10.16030/j.cnki.issn.1000-3665.202308038
Citation: LIAO Songlin, MA Shijia, XIA Changyou, GAO Zhihao, LIU Muxin, LIANG Xi, DAI Qing, HUANG Xinwo, JIANG Zeyuan, YU Bingqing. Research on monitoring methods and technical systems of CO2 mineralization in basalt formation[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 41-52. doi: 10.16030/j.cnki.issn.1000-3665.202308038

Research on monitoring methods and technical systems of CO2 mineralization in basalt formation

More Information
  • CO2 storage in basalt formation has received much attention as one of the new CO2 geological storage methods worldwide. It has been successfully implemented in Iceland and the United States. During the process of carbon storage in basalt, CO2 is transformed into solid minerals, which differs significantly from carbon storage in sandstone reservoirs in terms of CO2 injection method, burial depth, and physical property requirements of reservoir cap. Significant differences are also found in both monitoring schemes. By studying the Wallula basalt storage project in the United States and the Carbfix mineralization storage project in Iceland, this study compared and summarized the monitoring schemes of basalt storage for different CO2 injection phases (supercritical and gas dissolved state). The monitoring systems of basalt storage, saline aquifer storage, oil and gas reservoir storage were further compared. The storage monitoring system for sandstone reservoir focuses on the structural integrity of the CO2 reservoir and evaluating the change of CO2 concentration along the potential leakage path. The monitoring period is usually more than 50 years. In contrast, basalt mineralization and storage technology focus on the mineralization reaction of “water-CO2-basalt”. Its monitoring system is mainly to describe the property changing pattern of each substance from downhole fluid (chemical compositions, tracer concentrations, pH, etc.) during the storage cycle. Moreover, it evaluates the degree of mineralization reaction and the storage efficiency of basalt qualitatively and quantitatively. Finally, based on the systematic and comprehensive monitoring scheme of saline aquifer and oil and gas reservoir storage, the basalt-CO2 mineralization storage monitoring technology is analyzed systematically and a complete set of basalt-CO2 mineralization storage monitoring scheme and process is summarized. By comparing different CO2 storage monitoring systems, this study proposes a universal “subsurface-wellbore-surface-ground” monitoring scheme for basalt-CO2 mineralization: monitoring scope, purpose, program, and alert system. This provides basic information for the future basalt-CO2 mineralization storage demonstration project.

  • 加载中
  • [1] 赵震宇,姚舜,杨朔鹏,等. “双碳”目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学,2023,44(2):1128 − 1138. [ZHAO Zhenyu,YAO Shun,YANG Shuopeng,et al. Under goals of carbon peaking and carbon neutrality:Status,problems,and suggestions of CCUS in China[J]. Environmental Science,2023,44(2):1128 − 1138. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Zhenyu, YAO Shun, YANG Shuopeng, et al. Under goals of carbon peaking and carbon neutrality: Status, problems, and suggestions of CCUS in China[J]. Environmental Science, 2023, 44(2): 1128 − 1138. (in Chinese with English abstract)

    Google Scholar

    [2] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2023)[R]. 中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023. [ZHANG Xian,YANG Xiaoliang,LU Xi,et al. China CO2 capture,utilization and storage (CCUS) annual report (2023)[R]. China Agenda 21 Management Center,Global Institute of Carbon Capture and Storage,Tsinghua University,2023. (in Chinese)]

    Google Scholar

    ZHANG Xian, YANG Xiaoliang, LU Xi, et al. China CO2 capture, utilization and storage (CCUS) annual report (2023)[R]. China Agenda 21 Management Center, Global Institute of Carbon Capture and Storage, Tsinghua University, 2023. (in Chinese)

    Google Scholar

    [3] 宋新民,王峰,马德胜,等. 中国石油二氧化碳捕集,驱油与埋存技术进展及展望[J]. 石油勘探与开发,2023,50(1):206 − 218. [SONG Xinmin,WANG Feng,MA Desheng,et al. Progress and prospect of carbon dioxide capture,utilization and storage in CNPC oilfields[J]. Petroleum Exploration & Development,2023,50(1):206 − 218. (in Chinese with English abstract)] doi: 10.11698/PED.20220366

    CrossRef Google Scholar

    SONG Xinmin, WANG Feng, MA Desheng, et al. Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields[J]. Petroleum Exploration & Development, 2023, 50(1): 206 − 218. (in Chinese with English abstract) doi: 10.11698/PED.20220366

    CrossRef Google Scholar

    [4] 王昊,林千果,郭军红,等. 黄土塬地区CO2驱油封存泄漏地下水监测体系研究[J]. 环境工程,2021,39(8):217 − 226. [WANG Hao,LIN Qianguo,GUO Junhong,et al. Development of a groundwater monitoring system for CO2 leakage of CO2-EOR storage in Loess Tableland Region[J]. Environmental Engineering,2021,39(8):217 − 226. (in Chinese with English abstract)]

    Google Scholar

    WANG Hao, LIN Qianguo, GUO Junhong, et al. Development of a groundwater monitoring system for CO2 leakage of CO2-EOR storage in Loess Tableland Region[J]. Environmental Engineering, 2021, 39(8): 217 − 226. (in Chinese with English abstract)

    Google Scholar

    [5] 李琦,刘桂臻,李小春,等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术,2022,54(1):157 − 166. [LI Qi,LIU Guizhen,LI Xiaochun,et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences,2022,54(1):157 − 166. (in Chinese with English abstract)]

    Google Scholar

    LI Qi, LIU Guizhen, LI Xiaochun, et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences, 2022, 54(1): 157 − 166. (in Chinese with English abstract)

    Google Scholar

    [6] 张成龙,郝文杰,胡丽莎,等. 泄漏情景下碳封存项目的环境影响监测技术方法[J]. 中国地质调查,2021,8(4):92 − 100. [ZHANG Chenglong,HAO Wenjie,HU Lisha,et al. Environmental impact monitoring technology for carbon storage projects under leakage scenarios[J]. Geological Survey of China,2021,8(4):92 − 100. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Chenglong, HAO Wenjie, HU Lisha, et al. Environmental impact monitoring technology for carbon storage projects under leakage scenarios[J]. Geological Survey of China, 2021, 8(4): 92 − 100. (in Chinese with English abstract)

    Google Scholar

    [7] KELEMEN P B,MCQUEEN N,WILCOX J,et al. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air:Review and new insights[J]. Chemical Geology,2020,550:119628.

    Google Scholar

    [8] 邱添,曾令森,申婷婷. 基性-超基性岩碳酸盐化固碳效应研究进展[J]. 中国地质调查,2021,8(4):20 − 32. [QIU Tian,ZENG Lingsen,SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks[J]. Geological Survey of China,2021,8(4):20 − 32. (in Chinese with English abstract)]

    Google Scholar

    QIU Tian, ZENG Lingsen, SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks[J]. Geological Survey of China, 2021, 8(4): 20 − 32. (in Chinese with English abstract)

    Google Scholar

    [9] MCGRAIL B P,SPANE F A,AMONETTE J E,et al. Injection and monitoring at the Wallula basalt pilot project[J]. Energy Procedia,2014,63:2939 − 2948. doi: 10.1016/j.egypro.2014.11.316

    CrossRef Google Scholar

    [10] 高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66 − 75. [GAO Zhihao,XIA Changyou,LIAO Songlin,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities,2023,29(1):66 − 75. (in Chinese with English abstract)]

    Google Scholar

    GAO Zhihao, XIA Changyou, LIAO Songlin, et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities, 2023, 29(1): 66 − 75. (in Chinese with English abstract)

    Google Scholar

    [11] 李万伦,陈晶,贾凌霄,等. 玄武岩CO2 地质封存研究进展[J]. 地质论评,2022,68(2):648 − 657. [LI Wanlun,CHEN Jing,JIA Lingxiao,et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review,2022,68(2):648 − 657. (in Chinese with English abstract)]

    Google Scholar

    LI Wanlun, CHEN Jing, JIA Lingxiao, et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review, 2022, 68(2): 648 − 657. (in Chinese with English abstract)

    Google Scholar

    [12] VIALLE S,DRUHAN J L,MAHER K. Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies[J]. International Journal of Greenhouse Gas Control,2016,44:11 − 25. doi: 10.1016/j.ijggc.2015.10.007

    CrossRef Google Scholar

    [13] 张森琦,刁玉杰,程旭学,等. 二氧化碳地质储存逃逸通道及环境监测研究[J]. 冰川冻土,2010,32(6):1251 − 1261. [ZHANG Senqi,DIAO Yujie,CHENG Xue,et al. CO2 geological storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology,2010,32(6):1251 − 1261. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Senqi, DIAO Yujie, CHENG Xue, et al. CO2 geological storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1251 − 1261. (in Chinese with English abstract)

    Google Scholar

    [14] 任韶然,李德祥,张亮,等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报,2014,35(3):591 − 601. [REN Shaoran,LI Dexiang,ZHANG Liang,et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica,2014,35(3):591 − 601. (in Chinese with English abstract)] doi: 10.7623/syxb201403024

    CrossRef Google Scholar

    REN Shaoran, LI Dexiang, ZHANG Liang, et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica, 2014, 35(3): 591 − 601. (in Chinese with English abstract) doi: 10.7623/syxb201403024

    CrossRef Google Scholar

    [15] 吴江莉,马俊杰. 浅议CO2地质封存的潜在风险[J]. 环境科学导刊,2012,31(6):89 − 93. [WU Jiangli,MA Junjie. A discussion about potential risks of geological storage of CO2[J]. Environmental Science Survey,2012,31(6):89 − 93. (in Chinese with English abstract)] doi: 10.3969/j.issn.1673-9655.2012.06.025

    CrossRef Google Scholar

    WU Jiangli, MA Junjie. A discussion about potential risks of geological storage of CO2[J]. Environmental Science Survey, 2012, 31(6): 89 − 93. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-9655.2012.06.025

    CrossRef Google Scholar

    [16] 中国二氧化碳地质封存环境风险研究组. 中国二氧化碳地质封存环境风险评估[M]. 北京:化学工业出版社,2018. [Environmental risk assessment of geological storage of carbon dioxide in China[M]. Beijing:Chemical Industry Press,2018. (in Chinese)]

    Google Scholar

    Environmental risk assessment of geological storage of carbon dioxide in China[M]. Beijing: Chemical Industry Press, 2018. (in Chinese)

    Google Scholar

    [17] 王晓桥,马登龙,夏锋社,等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程,2020,27(2):23 − 34. [WANG Xiaoqiao,MA Denglong,XIA Fengshe,et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering,2020,27(2):23 − 34. (in Chinese with English abstract)]

    Google Scholar

    WANG Xiaoqiao, MA Denglong, XIA Fengshe, et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering, 2020, 27(2): 23 − 34. (in Chinese with English abstract)

    Google Scholar

    [18] 林千果,张少君,王香增,等. 低渗透和特低渗透油藏CO2驱油封存监测体系的建立[J]. 安全与环境学报,2019,19(2):693 − 703. [LIN Qianguo,ZHANG Shaojun,WANG Xiangzeng,et al. Integrated monitoring system for CO2-EOR and storage in low and extra-low permeability reservoir[J]. Journal of Safety and Environment,2019,19(2):693 − 703. (in Chinese with English abstract)]

    Google Scholar

    LIN Qianguo, ZHANG Shaojun, WANG Xiangzeng, et al. Integrated monitoring system for CO2-EOR and storage in low and extra-low permeability reservoir[J]. Journal of Safety and Environment, 2019, 19(2): 693 − 703. (in Chinese with English abstract)

    Google Scholar

    [19] LI Q,LIU G. Risk assessment of the geological storage of CO2:A review[M]//Geologic Carbon Sequestration. Cham: Springer International Publishing, 2016: 249−284.

    Google Scholar

    [20] GUNNARSSON I,ARADÓTTIR E S,OELKERS E H,et al. The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J]. International Journal of Greenhouse Gas Control,2018,79:117 − 126. doi: 10.1016/j.ijggc.2018.08.014

    CrossRef Google Scholar

    [21] SNÆBJÖRNSDÓTTIR S Ó,SIGFÚSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90 − 102. doi: 10.1038/s43017-019-0011-8

    CrossRef Google Scholar

    [22] MATTER J M,KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience,2009,2(12):837 − 841. doi: 10.1038/ngeo683

    CrossRef Google Scholar

    [23] KELEMEN P B,MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proc Natl Acad Sci USA,2008,105(45):17295 − 17300. doi: 10.1073/pnas.0805794105

    CrossRef Google Scholar

    [24] 张亮,温荣华,耿松鹤,等. CO2在玄武岩中矿物封存研究进展及关键问题[J]. 高校化学工程学报,2022,36(4):473 − 480. [ZHANG Liang,WEN Ronghua,GENG Songhe,et al. Mineral trapping of CO2 in basalt rock:Progress and key issues[J]. Journal of Chemical Engineering of Chinese Universities,2022,36(4):473 − 480. (in Chinese with English abstract] doi: 10.3969/j.issn.1003-9015.2022.04.002

    CrossRef Google Scholar

    ZHANG Liang, WEN Ronghua, GENG Songhe, et al. Mineral trapping of CO2 in basalt rock: Progress and key issues[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(4): 473 − 480. (in Chinese with English abstract doi: 10.3969/j.issn.1003-9015.2022.04.002

    CrossRef Google Scholar

    [25] 何民宇,刘维燥,刘清才,等. CO2矿物封存技术研究进展[J]. 化工进展,2022,41(4):1825 − 1833. [HE Minyu,LIU Weizao,LIU Qingcai,et al. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress,2022,41(4):1825 − 1833. (in Chinese with English abstract)]

    Google Scholar

    HE Minyu, LIU Weizao, LIU Qingcai, et al. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825 − 1833. (in Chinese with English abstract)

    Google Scholar

    [26] RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:Mechanisms and technical challenges[J]. Earth-Science Reviews,2022,229:104036. doi: 10.1016/j.earscirev.2022.104036

    CrossRef Google Scholar

    [27] SULLIVAN E C,HARDAGE B A,MCGRAIL B P,et al. Breakthroughs in seismic and borehole characterization of basalt sequestration targets[J]. Energy Procedia,2011,4:5615 − 5622. doi: 10.1016/j.egypro.2011.02.551

    CrossRef Google Scholar

    [28] MCGRAIL B P,SCHAEF H T,SPANE F A,et al. Wallula basalt pilot demonstration project:Post-injection results and conclusions[J]. Energy Procedia,2017,114:5783 − 5790. doi: 10.1016/j.egypro.2017.03.1716

    CrossRef Google Scholar

    [29] WHITE S K,SPANE F A,SCHAEF H T,et al. Quantification of CO2 mineralization at the Wallula Basalt Pilot project[J]. Environmental Science Technology,2020,54(22):14609 − 14616. doi: 10.1021/acs.est.0c05142

    CrossRef Google Scholar

    [30] SNÆBJÖRNSDÓTTIR S Ó,OELKERS E H,MESFIN K,et al. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland[J]. International Journal of Greenhouse Gas Control,2017,58:87 − 102. doi: 10.1016/j.ijggc.2017.01.007

    CrossRef Google Scholar

    [31] MATTER J M,STUTE M,SNÆBJÖRNSDOTTIR S Ó,et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science,2016,352(6291):1312 − 1314. doi: 10.1126/science.aad8132

    CrossRef Google Scholar

    [32] SNÆBJÖRNSDOTTIR S Ó,GISLASON S R,GALECZKA I M,et al. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi,SW-Iceland[J]. Geochimica et Cosmochimica Acta,2018,220:348 − 366. doi: 10.1016/j.gca.2017.09.053

    CrossRef Google Scholar

    [33] 李万伦,徐佳佳,贾凌霄,等. 玄武岩封存CO2技术方法及其进展[J]. 水文地质工程地质,2022,(3):164−173. [LI Wanlun,XU Jiajia,JIA Lingxiao,et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology,2022,49(3):164−173. (in Chinese with English abstract)]

    Google Scholar

    LI Wanlun, XU Jiajia, JIA Lingxiao, et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 164−173. (in Chinese with English abstract)

    Google Scholar

    [34] MATTER J M,BROECKER W S,GISLASON S R,et al. The CarbFix Pilot Project–storing carbon dioxide in basalt[J]. Energy Procedia,2011,4:5579 − 5585. doi: 10.1016/j.egypro.2011.02.546

    CrossRef Google Scholar

    [35] GíSLASON S R,SIGURDARDÓTTIR H,ARADÓTTIR E S,et al. A brief history of CarbFix:Challenges and victories of the project's pilot phase[J]. Energy Procedia,2018,146:103 − 114. doi: 10.1016/j.egypro.2018.07.014

    CrossRef Google Scholar

    [36] CLARK D E,GUNNARSSON I,ARADÓTTIR E S,et al. The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site,Iceland[J]. Energy Procedia,2018,146:121 − 128. doi: 10.1016/j.egypro.2018.07.016

    CrossRef Google Scholar

    [37] CLARK D E,OELKERS E H,GUNNARSSON I,et al. CarbFix2:CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250°C[J]. Geochimica et Cosmochimica Acta,2020,279:45 − 66. doi: 10.1016/j.gca.2020.03.039

    CrossRef Google Scholar

    [38] RATOUIS T M P,SNÆBJÖRNSDÓTTIR S Ó,VOIGT M J,et al. Carbfix 2:A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi,SW-Iceland[J]. International Journal of Greenhouse Gas Control,2022,114:103586. doi: 10.1016/j.ijggc.2022.103586

    CrossRef Google Scholar

    [39] MATTER J M,STUTE M,HALL J,et al. Monitoring permanent CO2 storage by in situ mineral carbonation using a reactive tracer technique[J]. Energy Procedia,2014,63:4180 − 4185. doi: 10.1016/j.egypro.2014.11.450

    CrossRef Google Scholar

    [40] 魏宁,刘胜男,李小春,等. CO2地质利用与封存的关键技术清单[J]. 洁净煤技术,2022,28(6):14 − 25. [WEI Ning,LIU Shengnan,LI Xiaochun,et al. Key technologies inventory of CO2 geological utilization and storage[J]. Clean Coal Technology,2022,28(6):14 − 25. (in Chinese with English abstract)]

    Google Scholar

    WEI Ning, LIU Shengnan, LI Xiaochun, et al. Key technologies inventory of CO2 geological utilization and storage[J]. Clean Coal Technology, 2022, 28(6): 14 − 25. (in Chinese with English abstract)

    Google Scholar

    [41] 王容,杨宇尧,段希宇,等. CO2封存地下监测评价技术[J]. 油气藏评价与开发,2011,1(4):44 − 46. [WANG Rong,YANG Yuyao,DUAN Xiyu,et al. Subsurface monitoring and evaluation technique for CO2 storage[J]. Reservoir Evaluation and Development,2011,1(4):44 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-1426.2011.04.009

    CrossRef Google Scholar

    WANG Rong, YANG Yuyao, DUAN Xiyu, et al. Subsurface monitoring and evaluation technique for CO2 storage[J]. Reservoir Evaluation and Development, 2011, 1(4): 44 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1426.2011.04.009

    CrossRef Google Scholar

    [42] 胥蕊娜,姜培学. CO2地质封存与利用技术研究进展[J]. 中国基础科学,2018,20(4):44 − 48. [XU Ruina,JIANG Peixue. Research progress of CO2 geological storage and utilization technology[J]. China Basic Science,2018,20(4):44 − 48. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-2412.2018.04.008

    CrossRef Google Scholar

    XU Ruina, JIANG Peixue. Research progress of CO2 geological storage and utilization technology[J]. China Basic Science, 2018, 20(4): 44 − 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-2412.2018.04.008

    CrossRef Google Scholar

    [43] 马永法, 周学军, 董俊领, 等. 黑龙江林甸地区深部咸水层CO2地质储存条件与潜力评估[J]. 水文地质工程地质,2022,49(6):179 − 189. [MA Yongfa, ZHOU Xuejun, DONG Junling, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology,2022,49(6):179 − 189. (in Chinese with English abstract)]

    Google Scholar

    MA Yongfa, ZHOU Xuejun, DONG Junling, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 179 − 189. (in Chinese with English abstract)

    Google Scholar

    [44] 马鑫, 李旭峰, 文冬光, 等. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质,2021,48(6):196 − 205. [MA Xin, LI Xufeng, WEN Dongguang, et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar Area of Xinjiang[J]. Hydrogeology & Engineering Geology,2021,48(6):196 − 205. (in Chinese with English abstract)]

    Google Scholar

    MA Xin, LI Xufeng, WEN Dongguang, et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar Area of Xinjiang[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 196 − 205. (in Chinese with English abstract)

    Google Scholar

    [45] 李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13 − 21. [LI Qi,CAI Bofeng,CHEN Fan,et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering,2019,37(2):13 − 21. (in Chinese with English abstract)]

    Google Scholar

    LI Qi, CAI Bofeng, CHEN Fan, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2): 13 − 21. (in Chinese with English abstract)

    Google Scholar

    [46] 王保登,赵兴雷,崔倩,等. 中国神华煤制油深部咸水层CO2地质封存示范项目监测技术分析[J]. 环境工程,2018,36(2):33 − 36. [WANG Baodeng,ZHAO Xinglei,CUI Qian,et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project[J]. Environmental Engineering,2018,36(2):33 − 36. (in Chinese with English abstract)]

    Google Scholar

    WANG Baodeng, ZHAO Xinglei, CUI Qian, et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project[J]. Environmental Engineering, 2018, 36(2): 33 − 36. (in Chinese with English abstract)

    Google Scholar

    [47] 赵兴雷,崔倩,王保登,等. CO2地质封存项目环境监测评估体系初步研究[J]. 环境工程,2018,36(2):15 − 20. [ZHAO Xinglei,CUI Qian,WANG Baodeng,et al. Preliminary study of environmental monitoring assessment system for CO2 storage projects[J]. Environmental Engineering,2018,36(2):15 − 20. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Xinglei, CUI Qian, WANG Baodeng, et al. Preliminary study of environmental monitoring assessment system for CO2 storage projects[J]. Environmental Engineering, 2018, 36(2): 15 − 20. (in Chinese with English abstract)

    Google Scholar

    [48] 赵兴雷,马瑞,李国涛,等. 神华咸水层CO2封存监测安全评价体系的研究[J]. 化工进展,2016,35(增刊2):389 − 395. [ZHAO Xinglei,MA Rui,LI Guotao,et al. Studies on multi-factor safety system in the monitoring process for Shenhua CO2 saline layers storage project[J]. Chemical Industry and Engineering Progress,2016,35(Sup2):389 − 395. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Xinglei, MA Rui, LI Guotao, et al. Studies on multi-factor safety system in the monitoring process for Shenhua CO2 saline layers storage project[J]. Chemical Industry and Engineering Progress, 2016, 35(Sup2): 389 − 395. (in Chinese with English abstract)

    Google Scholar

    [49] 汤沭成,林千果,王昊,等. 黄土塬地区CO2驱油封存泄漏土壤监测体系研究[J]. 安全与环境工程,2020,27(6):112 − 118. [TANG Shucheng,LIN Qianguo,WANG Hao,et al. Study on soil monitoring system for CO2 leakage of CO2-EOR and storage in Loess Tableland Region[J]. Safety and Environmental Engineering,2020,27(6):112 − 118. (in Chinese with English abstract)]

    Google Scholar

    TANG Shucheng, LIN Qianguo, WANG Hao, et al. Study on soil monitoring system for CO2 leakage of CO2-EOR and storage in Loess Tableland Region[J]. Safety and Environmental Engineering, 2020, 27(6): 112 − 118. (in Chinese with English abstract)

    Google Scholar

    [50] 庞凌云,蔡博峰,陈潇君,等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》环境风险评价流程研究[J]. 环境工程,2019,37(2):45 − 50. [PANG Lingyun,CAI Bofeng,CHEN Xiaojun,et al. Research on process of technical guideline on environmental risk assessment for carbon dioxide capture,utilization,and storage (on trial)[J]. Environmental Engineering,2019,37(2):45 − 50. (in Chinese with English abstract)]

    Google Scholar

    PANG Lingyun, CAI Bofeng, CHEN Xiaojun, et al. Research on process of technical guideline on environmental risk assessment for carbon dioxide capture, utilization, and storage (on trial)[J]. Environmental Engineering, 2019, 37(2): 45 − 50. (in Chinese with English abstract)

    Google Scholar

    [51] 马劲风,杨杨,蔡博峰,等. 不同类型二氧化碳地质封存项目的环境监测问题与监测范围[J]. 环境工程,2018,36(2):10 − 14. [MA Jinfeng,YANG Yang,CAI Bofeng,et al. Environmental monitoring range for different types of CO2 geologic sequestration projects and its related issues[J]. Environmental Engineering,2018,36(2):10 − 14. (in Chinese with English abstract)]

    Google Scholar

    MA Jinfeng, YANG Yang, CAI Bofeng, et al. Environmental monitoring range for different types of CO2 geologic sequestration projects and its related issues[J]. Environmental Engineering, 2018, 36(2): 10 − 14. (in Chinese with English abstract)

    Google Scholar

    [52] 朱佩誉. CO2在咸水层的地质封存及应用进展[J]. 洁净煤技术,2021,27(增刊2):33 − 38. [ZHU Peiyu. Geological storage and application progress of CO2 in saline aquifer[J]. Clean Coal Technology,2021,27(Sup2):33 − 38. (in Chiense with English abstract]

    Google Scholar

    ZHU Peiyu. Geological storage and application progress of CO2 in saline aquifer[J]. Clean Coal Technology, 2021, 27(Sup2): 33 − 38. (in Chiense with English abstract

    Google Scholar

    [53] 李琦,刘桂臻,蔡博峰,等. 二氧化碳地质封存环境风险评估的空间范围确定方法研究[J]. 环境工程,2018,36(2):27 − 32. [LI Qi,LIU Guizhen,CAI Bofeng,et al. Principle and methodology of determining the spactial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering,2018,36(2):27 − 32. (in Chinese with English abstract)]

    Google Scholar

    LI Qi, LIU Guizhen, CAI Bofeng, et al. Principle and methodology of determining the spactial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering, 2018, 36(2): 27 − 32. (in Chinese with English abstract)

    Google Scholar

    [54] 中国环境科学学会. 二氧化碳地质利用与封存项目泄漏风险评价规范:T/CSES 71—2022[S]. [Chinese Society for Environmental Sciences. The specification on risk assessment of the leakage:T/CSES 71—2022[S]. (in Chinese)]

    Google Scholar

    Chinese Society for Environmental Sciences. The specification on risk assessment of the leakage: T/CSES 71—2022[S]. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(1351) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint