2024 Vol. 51, No. 1
Article Contents

XIA Chuan’an, WANG Hao, JIAN Wenbin. Estimation of conductivity fields by using a correlation-based localization scheme of iterative ensemble smoother[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 12-21. doi: 10.16030/j.cnki.issn.1000-3665.202303033
Citation: XIA Chuan’an, WANG Hao, JIAN Wenbin. Estimation of conductivity fields by using a correlation-based localization scheme of iterative ensemble smoother[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 12-21. doi: 10.16030/j.cnki.issn.1000-3665.202303033

Estimation of conductivity fields by using a correlation-based localization scheme of iterative ensemble smoother

More Information
  • In the studies of groundwater flow and solute transport, many efforts have been made to estimate hydrogeological parameters through physical-distance based localization schemes of ensemble assimilation approaches. However, these methods are unavailable when there are no physical distances between parameters and observations. To avoid this limitation, we calculate the tapering factors in terms of the correlation coefficients between parameters and observations and develop a novel correlation-based localization scheme of iterative ensemble smoother. For the purpose of comparison, a physical distance-based scheme of iterative ensemble smoother together with the new approach are used to assimilate hydraulic head information and estimate the hydraulic conductivity field of a 2D confined aquifer. Among the test cases, we consider different configurations of ensemble size, observation error and number of observations, and their impacts on the accuracy of conductivity estimation can be well explored. The results show that (1) the root mean square error of hydraulic conductivity, RMSE, obtained through the new approach for each test case of interest, is lower than its counterpart through the physical distance-based approach, with the RMSE ranges of [0.8307, 0.9590] and [0.8394, 1.0000] for all test cases through the two approaches, respectively. (2) The estimated conductivity field has discontinuities when using the physical distance-based approach, but this does not happen when using the new approach. In this study, we develop a novel correlation-based localization scheme of iterative ensemble smoother, which is free of the definitions of physical distances between parameters and observations, yields higher accuracy of parameter estimation in comparison with the physical distance-based approach, and can be a useful tool for estimating hydrogeological parameters.

  • 加载中
  • [1] 杨运,吴吉春,骆乾坤,等. 考虑预报偏差的迭代式集合卡尔曼滤波在地下水水流数据同化中的应用[J]. 水文地质工程地质,2022,49(6):13 − 23. [YANG Yun,WU Jichun,LUO Qiankun,et al. Application of the bias aware Ensemble Kalman Filter with confirming option (Bias-CEnKF) in groundwater flow data assimilation[J]. Hydrogeology & Engineering Geology,2022,49(6):13 − 23. (in Chinese with English abstract)

    Google Scholar

    YANG Yun, WU Jichun, LUO Qiankun, et al. Application of the bias aware Ensemble Kalman Filter with confirming option (Bias-CEnKF) in groundwater flow data assimilation[J]. Hydrogeology & Engineering Geology, 2022, 496): 1323. (in Chinese with English abstract)

    Google Scholar

    [2] 宗成元,康学远,施小清,等. 基于多点地质统计与集合平滑数据同化方法识别非高斯渗透系数场[J]. 水文地质工程地质,2020,47(2):1 − 8. [ZONG Chengyuan,KANG Xueyuan,SHI Xiaoqing,et al. Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method[J]. Hydrogeology & Engineering Geology,2020,47(2):1 − 8. (in Chinese with English abstract)

    Google Scholar

    ZONG Chengyuan, KANG Xueyuan, SHI Xiaoqing, et al. Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method[J]. Hydrogeology & Engineering Geology, 2020, 472): 18. (in Chinese with English abstract)

    Google Scholar

    [3] MO Shaoxing,ZABARAS N,SHI Xiaoqing,et al. Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification[J]. Water Resources Research,2019,55(5):3856 − 3881. doi: 10.1029/2018WR024638

    CrossRef Google Scholar

    [4] XIA Chuanan,HU B X,TONG Juxiu,et al. Data assimilation in density-dependent subsurface flows via localized iterative ensemble Kalman filter[J]. Water Resources Research,2018,54(9):6259 − 6281. doi: 10.1029/2017WR022369

    CrossRef Google Scholar

    [5] ZHANG Jiangjiang,LIN Guang,LI Weixuan,et al. An iterative local updating ensemble smoother for estimation and uncertainty assessment of hydrologic model parameters with multimodal distributions[J]. Water Resources Research,2018,54(3):1716 − 1733. doi: 10.1002/2017WR020906

    CrossRef Google Scholar

    [6] CHEN Zi,GÓMEZ-HERNÁNDEZ J J,XU Teng,et al. Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter[J]. Journal of Hydrology,2018,564:1074 − 1084. doi: 10.1016/j.jhydrol.2018.07.073

    CrossRef Google Scholar

    [7] 李丽敏,温宗周,董勋凯,等. 基于矩阵奇异值分解约束型无迹粒子滤波的滑坡位移预测模型研究[J]. 水土保持通报,2019,39(1):132 − 136. [LI Limin,WEN Zongzhou,DONG Xunkai,et al. Landslide displacement prediction model based on singular value decomposition constrained unscented particle filter[J]. Bulletin of Soil and Water Conservation,2019,39(1):132 − 136. (in Chinese with English abstract)

    Google Scholar

    LI Limin, WEN Zongzhou, DONG Xunkai, et al. Landslide displacement prediction model based on singular value decomposition constrained unscented particle filter[J]. Bulletin of Soil and Water Conservation, 2019, 391): 132136. (in Chinese with English abstract)

    Google Scholar

    [8] 薛长虎. 基于改进粒子滤波的大型滑坡数据同化方法研究[D]. 武汉:武汉大学,2019 [XUE Changhu. Research on data assimilation method of large landslide based on improved particle filter[D]. Wuhan:Wuhan University,2019. (in Chinese with English abstract)

    Google Scholar

    XUE Changhu. Research on data assimilation method of large landslide based on improved particle filter[D]. Wuhan: Wuhan University, 2019. (in Chinese with English abstract)

    Google Scholar

    [9] ZHANG Hongqin,TIAN Xiangjun. A multigrid nonlinear least squares four-dimensional variational data assimilation scheme with the advanced research weather research and forecasting model[J]. Journal of Geophysical Research:Atmospheres,2018,123(10):5116 − 5129.

    Google Scholar

    [10] LUO Xiaodong,BHAKTA T. Automatic and adaptive localization for ensemble-based history matching[J]. Journal of Petroleum Science and Engineering,2020,184:106559. doi: 10.1016/j.petrol.2019.106559

    CrossRef Google Scholar

    [11] LUO Xiaodong,LORENTZEN R,VALESTRAND R,et al. Correlation-based adaptive localization for ensemble-based history matching:applied to the norne field case study[Z]. Spe Norway One Day Seminar,Norway,2018.

    Google Scholar

    [12] BISHOP C H,HODYSS D. Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation[J]. Monthly Weather Review,2011,139(4):1241 − 1255. doi: 10.1175/2010MWR3403.1

    CrossRef Google Scholar

    [13] CHEN Yan,ZHANG Dongxiao. Data assimilation for transient flow in geologic formations via ensemble Kalman filter[J]. Advances in Water Resources,2006,29(8):1107 − 1122. doi: 10.1016/j.advwatres.2005.09.007

    CrossRef Google Scholar

    [14] TONG Juxiu,HU B X,YANG Jinzhong. Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field[J]. Stochastic Environmental Research and Risk Assessment,2012,26(3):467 − 478. doi: 10.1007/s00477-011-0534-0

    CrossRef Google Scholar

    [15] NAN Tongchao,WU Jichun. Groundwater parameter estimation using the ensemble Kalman filter with localization[J]. Hydrogeology Journal,2011,19(3):547 − 561. doi: 10.1007/s10040-010-0679-9

    CrossRef Google Scholar

    [16] 南统超,吴吉春. 集合卡尔曼滤波估计水文地质参数的局域化修正[J]. 水科学进展,2010,21(5):613 − 621. [NAN Tongchao,WU Jichun. Localization corrections for the estimation of hydrogeological parameters using ensemble Kalman filter[J]. Advances in Water Science,2010,21(5):613 − 621. (in Chinese with English abstract)

    Google Scholar

    NAN Tongchao, WU Jichun. Localization corrections for the estimation of hydrogeological parameters using ensemble Kalman filter[J]. Advances in Water Science, 2010, 215): 613621. (in Chinese with English abstract)

    Google Scholar

    [17] SOARES R V,MASCHIO C,SCHIOZER D J. A novel localization scheme for scalar uncertainties in ensemble-based data assimilation methods[J]. Journal of Petroleum Exploration and Production Technology,2019,9(4):2497 − 2510. doi: 10.1007/s13202-019-0727-5

    CrossRef Google Scholar

    [18] FURRER R,BENGTSSON T. Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants[J]. Journal of Multivariate Analysis,2007,98(2):227 − 255. doi: 10.1016/j.jmva.2006.08.003

    CrossRef Google Scholar

    [19] MIYOSHI T. An adaptive covariance localization method with the LETKF[C]//14th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere,Oceans,and Land Surface (IOAS-AOLS). Atlanta:Americian Meterological Society,2010.

    Google Scholar

    [20] XIA Chuanan,LUO Xiaodong,HU B X,et al. Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations[J]. Hydrology and Earth System Sciences,2021,25(4):1689 − 1709. doi: 10.5194/hess-25-1689-2021

    CrossRef Google Scholar

    [21] SONG Xuehang,SHI Liangsheng,YE Ming,et al. Numerical comparison of iterative ensemble Kalman filters for unsaturated flow inverse modeling[J]. Vadose Zone Journal,2014,13(2):1 − 12.

    Google Scholar

    [22] 周研来,郭生练,郭家力,等. VIC模型参数的地区分布规律及在无资料流域的移用[J]. 水资源研究,2012,1(3):56 − 63. [ZHOU Yanlai,GUO Shenglian,GUO Jiali,et al. Regional distribution of the VIC model parameters and application in ungauged basins [J]. Journal of Water Resources Research,2012,1(3):56 − 63 (in Chinese with English Abstrct)

    Google Scholar

    ZHOU Yanlai, GUO Shenglian, GUO Jiali, et al. Regional distribution of the VIC model parameters and application in ungauged basins [J]. Journal of Water Resources Research, 2012, 13): 5663 (in Chinese with English Abstrct)

    Google Scholar

    [23] 石鸿蕾,郝奇琛,邵景力,等. 基于多源数据的弱透水层水文地质参数反演研究——以呼和浩特盆地某淤泥层为例[J]. 水文地质工程地质,2021,48(2):1 − 7. [SHI Honglei,HAO Qichen,SHAO Jingli,et al. Research on hydrogeological parameter inversion of an aquitard based on multi-source data:A case study of a silt layer in the Hohhot Basin[J]. Hydrogeology & Engineering Geology,2021,48(2):1 − 7. (in Chinese with English abstract)

    Google Scholar

    SHI Honglei, HAO Qichen, SHAO Jingli, et al. Research on hydrogeological parameter inversion of an aquitard based on multi-source data: A case study of a silt layer in the Hohhot Basin[J]. Hydrogeology & Engineering Geology, 2021, 482): 17. (in Chinese with English abstract)

    Google Scholar

    [24] BEAR J. Hydraulics of groundwater[M]. New York:McGraw-Hill Book Co,1979.

    Google Scholar

    [25] LUO Xiaodong,STORDAL A S,LORENTZEN R J,et al. Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem:Theory and applications[J]. SPE Journal,2015,20(5):962 − 982. doi: 10.2118/176023-PA

    CrossRef Google Scholar

    [26] ZHANG Hongqin,TIAN Xiangjun. An efficient local correlation matrix decomposition approach for the localization implementation of ensemble-based assimilation methods[J]. Journal of Geophysical Research:Atmospheres,2018,123(7):3556 − 3573.

    Google Scholar

    [27] ANDERSON T W. An introduction to multivariate statistical analysis[M]. 3rd ed. Hoboken:Wiley-Interscience,2003.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(326) PDF downloads(10) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint