2024 Vol. 51, No. 1
Article Contents

WU Yazun, YU Jianghao, LIN Yun, JIN Yi, LIU Yuan, WANG Xueqi. Experiment and simulation study on dissolution widening of carbonate rock fracture[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 41-46. doi: 10.16030/j.cnki.issn.1000-3665.202302064
Citation: WU Yazun, YU Jianghao, LIN Yun, JIN Yi, LIU Yuan, WANG Xueqi. Experiment and simulation study on dissolution widening of carbonate rock fracture[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 41-46. doi: 10.16030/j.cnki.issn.1000-3665.202302064

Experiment and simulation study on dissolution widening of carbonate rock fracture

More Information
  • Previous researches show that the dissolution of carbonate rocks can be characterized by dissolution rate equation, but the form of characterization is quite different, which is mainly reflected in the undersaturated state far from equilibrium. In order to further determine the dissolution characteristics of carbonate rocks in the undersaturated state and the characterization form of dissolution rate, first of all, the fracture dissolution test of carbonate rocks was carried out, and the influence of CO2 partial pressure and initial concentrations of Ca2+ on dissolution was discussed. Based on the test results, the dissolution rate equation in the undersaturated state was constructed. Then, the carbonate rock fracture seepage dissolution coupling model was used, calibrating and verifying the parameters of the quantitative model through numerical simulation. The results indicate that: (1) The participation of CO2 accelerates the dissolution expansion of carbonate rocks, and the higher the initial Ca2+ concentration of the solution, the higher the degree of dissolution inhibition of carbonate rocks. (2) The average dissolution rate of carbonate rock fractures under the action of CO2 increased by 1.82−2.29 times. (3) Under the same interval flow rate conditions for different initial Ca2+ solutions, the difference of Ca2+ concentration in distilled water decreased by 0.0915 mmol/L, and the initial Ca2+ concentration of 0.352, 0.476, 0.581 mmol/L decreased by 0.0742, 0.0536, 0.0474 mmol/L, respectively. (4) The dissolution kinetics is controlled by the linear rate law under the highly undersaturated state. With the increase of the concentration of Ca2+ in the solution, the dissolution kinetics becomes nonlinear, and the threshold of Ca2+ concentration between the two is 0.4 times the saturated of Ca2+ concentration. The study provides a reference for quantitative evaluation of karst development and evolution.

  • 加载中
  • [1] 袁道先,章程. 岩溶动力学的理论探索与实践[J]. 地球学报,2008,29(3):355 − 365. [YUAN Daoxian,ZHANG Cheng. Karst dynamics theory in China and its practice[J]. Acta Geoscientica Sinica,2008,29(3):355 − 365. (in Chinese with English abstract)

    Google Scholar

    YUAN Daoxian, ZHANG Cheng. Karst dynamics theory in China and its practice[J]. Acta Geoscientica Sinica, 2008, 293): 355365. (in Chinese with English abstract)

    Google Scholar

    [2] 李强. 流域尺度岩溶碳循环过程——“岩溶作用与碳中和”专栏特邀主编寄语[J]. 地球学报,2022,43(4):421 − 424. [LI Qiang. Karst carbon cycle process at watershed scale:Guest editor’s preface to “karst process and carbon neutralization”[J]. Acta Geoscientica Sinica,2022,43(4):421 − 424. (in Chinese with English abstract)

    Google Scholar

    LI Qiang. Karst carbon cycle process at watershed scale: Guest editor’s preface to “karst process and carbon neutralization”[J]. Acta Geoscientica Sinica, 2022, 434): 421424. (in Chinese with English abstract)

    Google Scholar

    [3] 唐健生,夏日元,邹胜章,等. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. 吉林大学学报(地球科学版),2005,35(4):481 − 486. [TANG Jiansheng,XIA Riyuan,ZOU Shengzhang,et al. Characteristics of karst medium system and its hydrogeologic effect in the South Tianshan,Xinjiang[J]. Journal of Jilin University (Earth Science Edition),2005,35(4):481 − 486. (in Chinese with English abstract)

    Google Scholar

    TANG Jiansheng, XIA Riyuan, ZOU Shengzhang, et al. Characteristics of karst medium system and its hydrogeologic effect in the South Tianshan, Xinjiang[J]. Journal of Jilin University (Earth Science Edition), 2005, 354): 481486. (in Chinese with English abstract)

    Google Scholar

    [4] 郭静芸,毕鑫涛,方然可,等. 可溶岩化学溶蚀试验方法研究综述[J]. 水文地质工程地质,2020,47(4):24 − 34. [GUO Jingyun,BI Xintao,FANG Ranke,et al. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology,2020,47(4):24 − 34. (in Chinese with English abstract)

    Google Scholar

    GUO Jingyun, BI Xintao, FANG Ranke, et al. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology, 2020, 474): 2434. (in Chinese with English abstract)

    Google Scholar

    [5] 林云,任华鑫,武亚遵,等. 不同赋存环境下碳酸盐岩溶蚀过程试验模拟研究[J]. 水文地质工程地质,2021,48(2):15 − 26. [LIN Yun,REN Huaxin,WU Yazun,et al. Experimental simulation of the carbonate dissolution process under different occurrence conditions[J]. Hydrogeology & Engineering Geology,2021,48(2):15 − 26. (in Chinese with English abstract)

    Google Scholar

    LIN Yun, REN Huaxin, WU Yazun, et al. Experimental simulation of the carbonate dissolution process under different occurrence conditions[J]. Hydrogeology & Engineering Geology, 2021, 482): 1526. (in Chinese with English abstract)

    Google Scholar

    [6] WHITE W B. The role of solution kinetics in the development of karst aquifers[J]. Karst hydrogeology International Association of Hydrogeologists,12th Memoirs,2011:503 − 517.

    Google Scholar

    [7] 刘再华,DREYBRODT W. 流动CO2-H2O系统中方解石溶解动力学机制——扩散边界层效应和CO2转换控制[J]. 地质学报,1998,72(4):340 − 348. [LIU Zaihua,DREYBRODT W. Dissolution kinetics of calcite in CO2-H2O solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction CO2+H2O H++HCO3[J]. Acta Geologica Sinica,1998,72(4):340 − 348. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.1998.04.005

    CrossRef Google Scholar

    LIU Zaihua, DREYBRODT W. Dissolution kinetics of calcite in CO2-H2O solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction CO2+H2O H++HCO3[J]. Acta Geologica Sinica, 1998, 724): 340348. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.1998.04.005

    CrossRef Google Scholar

    [8] 刘再华,DREYBRODT W. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学,2006,31(3):411 − 416. [LIU Zaihua,DREYBRODT W,LI Huaju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science,2006,31(3):411 − 416. (in Chinese with English abstract)

    Google Scholar

    LIU Zaihua, DREYBRODT W, LI Huaju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science, 2006, 313): 411416. (in Chinese with English abstract)

    Google Scholar

    [9] BUHMANN D,DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas:1. Open system[J]. Chemical Geology,1985,48(1/2/3/4):189 − 211. doi: 10.1016/0009-2541(85)90046-4

    CrossRef Google Scholar

    [10] BUHMANN D,DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas:2. Closed system[J]. Chemical Geology,1985,53(1/2/3/4):109 − 124.

    Google Scholar

    [11] PLUMMER L N,WIGLEY T M L,PARKHURST D L. The kinetics of calcite dissolution in CO2-water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO2[J]. American Journal of Science,1978,278(2):179 − 216. doi: 10.2475/ajs.278.2.179

    CrossRef Google Scholar

    [12] 刘再华,DREYBRODT W. 不同CO2分压条件下的白云岩溶解动力学机理[J]. 中国科学 (B辑 化学),2001,31(4):377 − 384. [LIU Zaihua,DREYBRODT W. Kinetics mechanism of dolomite dissolution under different CO2 partial pressures[J]. Science in China,SerB,2001,31(4):377 − 384. (in Chinese)

    Google Scholar

    LIU Zaihua, DREYBRODT W. Kinetics mechanism of dolomite dissolution under different CO2 partial pressures[J]. Science in China, SerB, 2001, 314): 377384. (in Chinese)

    Google Scholar

    [13] KAUFMANN G,DREYBRODT W. Calcite dissolution kinetics in the system CaCO3-H2O-CO2 at high undersaturation[J]. Geochimica et Cosmochimica Acta,2007,71(6):1398 − 1410. doi: 10.1016/j.gca.2006.10.024

    CrossRef Google Scholar

    [14] BUHMANN D,DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas[J]. Chemical Geology,1985,48(1/2/3/4):189 − 211.

    Google Scholar

    [15] KAUFMANN G,BRAUN J. Karst aquifer evolution in fractured rocks[J]. Water Resources Research,1999,35(11):3223 − 3238. doi: 10.1029/1999WR900169

    CrossRef Google Scholar

    [16] DREYBRODT W. Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models[J]. Water Resources Research,1996,32(9):2923 − 2935. doi: 10.1029/96WR01332

    CrossRef Google Scholar

    [17] DREYBRODT W,GABROVŠEK F. Basic processes and mechanisms governing the evolution of karst[J]. Speleogenesis and Evolution of Karst Aquifers,2003,1(1):1 − 26.

    Google Scholar

    [18] PALMER A N. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin,1991,103(1):1 − 21. doi: 10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2

    CrossRef Google Scholar

    [19] BERNER R A,MORSE J W. Dissolution kinetics of calcium carbonate in sea water; IV,Theory of calcite dissolution[J]. American Journal of Science,1974,274(2):108 − 134. doi: 10.2475/ajs.274.2.108

    CrossRef Google Scholar

    [20] PLUMMER L N,WIGLEY T M L. The dissolution of calcite in CO2-saturated solutions at 25 °C and 1 atmosphere total pressure[J]. Geochimica et Cosmochimica Acta,1976,40(2):191 − 202. doi: 10.1016/0016-7037(76)90176-9

    CrossRef Google Scholar

    [21] SVENSSON U,DREYBRODT W. Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium[J]. Chemical Geology,1992,100(1/2):129 − 145.

    Google Scholar

    [22] GABROVŠEK F,DREYBRODT W. Role of mixing corrosion in calcite-aggressive H2O-CO2-CaCO3 solutions in the early evolution of karst Aquifers in limestone[J]. Water Resources Research,2000,36(5):1179 − 1188. doi: 10.1029/1999WR900337

    CrossRef Google Scholar

    [23] KAUFMANN G. Modelling unsaturated flow in an evolving karst aquifer[J]. Journal of Hydrology,2003,276(1/2/3/4):53 − 70.

    Google Scholar

    [24] BRANTLEY S L,KUBICKI J D,WHITE A F. Kinetics of mineral dissolution[J]. Springer New York,2008,10(5):151 − 210.

    Google Scholar

    [25] MYERS T G. Modeling laminar sheet flow over rough surfaces[J]. Water Resources Research,2002,38(11):1 − 12.

    Google Scholar

    [26] 刘再华,DREYBRODT W,韩军,等. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J]. 中国岩溶,2005,24(1):1 − 14. [LIU Zaihua,DREYBRODT W,HAN Jun,et al. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica,2005,24(1):1 − 14. (in Chinese with English abstract)

    Google Scholar

    LIU Zaihua, DREYBRODT W, HAN Jun, et al. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica, 2005, 241): 114. (in Chinese with English abstract)

    Google Scholar

    [27] 许模,毛邦燕,张广泽,等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报(自然科学版),2020,47(6):724 − 732. [XU Mo,MAO Bangyan,ZHANG Guangze,et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Tibet Plateau,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(6):724 − 732. (in Chinese with English abstract)

    Google Scholar

    XU Mo, MAO Bangyan, ZHANG Guangze, et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Tibet Plateau, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 476): 724732. (in Chinese with English abstract)

    Google Scholar

    [28] 高阳,邱振忠,于青春. 层流—紊流共存流场中岩溶裂隙网络演化过程的数值模拟方法[J]. 中国岩溶,2019,38(6):831 − 838. [GAO Yang,QIU Zhenzhong,YU Qingchun. Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. Carsologica Sinica,2019,38(6):831 − 838. (in Chinese with English abstract)

    Google Scholar

    GAO Yang, QIU Zhenzhong, YU Qingchun. Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. Carsologica Sinica, 2019, 386): 831838. (in Chinese with English abstract)

    Google Scholar

    [29] 武亚遵,岑雷,林云,等. 河间隐伏型岩溶裂隙含水系统演化的数值模拟[J]. 中国岩溶,2019,38(6):839 − 845. [WU Yazun,CEN Lei,LIN Yun,et al. Numerical simulation for the evolution of covered karst fissure system between rivers[J]. Carsologica Sinica,2019,38(6):839 − 845. (in Chinese with English abstract)

    Google Scholar

    WU Yazun, CEN Lei, LIN Yun, et al. Numerical simulation for the evolution of covered karst fissure system between rivers[J]. Carsologica Sinica, 2019, 386): 839845. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1093) PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint