2024 Vol. 51, No. 1
Article Contents

DING Yu, PENG Boshi, XIA Zhenyao, LIU Zhenxian, LIU Chuxin. An experimental study on the pullout mechanical property of tortuous roots manufactured from 3D printing[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 82-90. doi: 10.16030/j.cnki.issn.1000-3665.202212045
Citation: DING Yu, PENG Boshi, XIA Zhenyao, LIU Zhenxian, LIU Chuxin. An experimental study on the pullout mechanical property of tortuous roots manufactured from 3D printing[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 82-90. doi: 10.16030/j.cnki.issn.1000-3665.202212045

An experimental study on the pullout mechanical property of tortuous roots manufactured from 3D printing

  • Natural roots systems exhibit various tortuous morphologies, which significantly impact the root-soil interaction characteristics. Previous studies often treated root systems as straight, neglecting the deformation characteristics and failure modes of tortuous root systems under tensile loads. In this study, tensile test and pullout test are conducted by using tortuous roots manufactured from 3D printing technology with three different root diameters (2.0, 3.5 and 5.0 mm) and five root tortuosity (1.00, 1.05, 1.10, 1.15, 1.20), and the pullout behaviours of tortuous roots are explored. The results indicate that the tensile properties of root systems are influenced by both the tortuous structure and the material properties. The ultimate tensile force and tensile stiffness decreases with increasing tortuosity but increase with increasing diameter. The peak pull-out force of the root system initially increases and then decreases with tortuosity, reaching a maximum value when tortuosity is equal to 1.15. The peak pull-out displacement shows a similar trend. The tortuous root system forms an engaging effect with the soil by compressing the soil ribs, enhancing the interaction between roots and soil. The tensile force and stiffness of the tortuous fine root system are low, making it more prone to coordinate deformation with the soil to bear tensile loads. The deformation under stress of tortuous root systems differs significantly from that of straight root systems. This study provides theoretical references for the evaluation of soil-reinforcement by root system.

  • 加载中
  • [1] 钟彩尹,李鹏程,马滔,等. 根-土复合体的三轴试验及其强度分析[J]. 水文地质工程地质,2022,49(6):97 − 104. [ZHONG Caiyin,LI Pengcheng,MA Tao,et al. Triaxial test and strength analysis of root-soil composite[J]. Hydrogeology & Engineering Geology,2022,49(6):97 − 104. (in Chinese with English abstract)

    Google Scholar

    ZHONG Caiyin, LI Pengcheng, MA Tao, et al. Triaxial test and strength analysis of root-soil composite[J]. Hydrogeology & Engineering Geology, 2022, 496): 97104. (in Chinese with English abstract)

    Google Scholar

    [2] VERGANI C,GIADROSSICH F,BUCKLEY P,et al. Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides:A review[J]. Earth-Science Reviews,2017,167:88 − 102. doi: 10.1016/j.earscirev.2017.02.002

    CrossRef Google Scholar

    [3] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)

    Google Scholar

    HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 465): 106112. (in Chinese with English abstract)

    Google Scholar

    [4] GIADROSSICH F,SCHWARZ M,COHEN D,et al. Mechanical interactions between neighbouring roots during pullout tests[J]. Plant and Soil,2013,367(1):391 − 406.

    Google Scholar

    [5] 胡夏嵩,陈桂琛,周国英,等. 青藏铁路沱沱河段路基边坡植物护坡根系力学强度试验研究[J]. 水文地质工程地质,2012,39(1):107 − 113. [HU Xiasong,CHEN Guichen,ZHOU Guoying,et al. A study of the mechanic strength of vegetation roots for roadbed slope protection in the Tuotuohe River region along the Qinghai-Tibet railway[J]. Hydrogeology & Engineering Geology,2012,39(1):107 − 113. (in Chinese with English abstract)

    Google Scholar

    HU Xiasong, CHEN Guichen, ZHOU Guoying, et al. A study of the mechanic strength of vegetation roots for roadbed slope protection in the Tuotuohe River region along the Qinghai-Tibet railway[J]. Hydrogeology & Engineering Geology, 2012, 391): 107113. (in Chinese with English abstract)

    Google Scholar

    [6] 王桂尧,胡圣辉,张永杰,等. 小乔木根系根土间作用力的室外拉拔试验研究[J]. 水文地质工程地质,2017,44(6):64 − 69. [WANG Guiyao,HU Shenghui,ZHANG Yongjie,et al. An outdoor drawing test study of the root soil interaction force for a small tree root system[J]. Hydrogeology & Engineering Geology,2017,44(6):64 − 69. (in Chinese with English abstract)

    Google Scholar

    WANG Guiyao, HU Shenghui, ZHANG Yongjie, et al. An outdoor drawing test study of the root soil interaction force for a small tree root system[J]. Hydrogeology & Engineering Geology, 2017, 446): 6469. (in Chinese with English abstract)

    Google Scholar

    [7] 刘亚斌,胡夏嵩,余冬梅,等. 西宁盆地黄土区2种灌木植物根-土界面微观结构特征及摩擦特性试验[J]. 岩石力学与工程学报,2018,37(5):1270 − 1280. [LIU Yabin,HU Xiasong,YU Dongmei,et al. Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining Basin[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1270 − 1280. (in Chinese with English abstract)

    Google Scholar

    LIU Yabin, HU Xiasong, YU Dongmei, et al. Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining Basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 375): 12701280. (in Chinese with English abstract)

    Google Scholar

    [8] JI Xiaodong,CONG Xu,DAI Xianqing,et al. Studying the mechanical properties of the soil-root interface using the pullout test method[J]. Journal of Mountain Science,2018,15(4):882 − 893. doi: 10.1007/s11629-015-3791-4

    CrossRef Google Scholar

    [9] 肖海,张千恒,夏振尧,等. 拉拔作用下护坡植物香根草根系的力学性能[J]. 农业工程学报,2022,38(11):91 − 97. [XIAO Hai,ZHANG Qianheng,XIA Zhenyao,et al. Mechanical properties of roots of Vetiveria zizanioides as protection slope plants under tensile and pullout conditions[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(11):91 − 97. (in Chinese with English abstract)

    Google Scholar

    XIAO Hai, ZHANG Qianheng, XIA Zhenyao, et al. Mechanical properties of roots of Vetiveria zizanioides as protection slope plants under tensile and pullout conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 3811): 9197. (in Chinese with English abstract)

    Google Scholar

    [10] DUPUY L,FOURCAUD T,STOKES A. A numerical investigation into factors affecting the anchorage of roots in tension[J]. European Journal of Soil Science,2005,56(3):319 − 327. doi: 10.1111/j.1365-2389.2004.00666.x

    CrossRef Google Scholar

    [11] SCHWARZ M,COHEN D,OR D. Root-soil mechanical interactions during pullout and failure of root bundles[J]. Journal of Geophysical Research:Earth Surface,2010,115(F4):F04035.

    Google Scholar

    [12] SCHWARZ M,COHEN D,OR D. Pullout tests of root analogs and natural root bundles in soil:Experiments and modeling[J]. Journal of Geophysical Research:Earth Surface,2011,116(F2):F02007.

    Google Scholar

    [13] MICKOVSKI S B,BENGOUGH A G,BRANSBY M F,et al. Material stiffness,branching pattern and soil matric potential affect the pullout resistance of model root systems[J]. European Journal of Soil Science,2007,58(6):1471 − 1481. doi: 10.1111/j.1365-2389.2007.00953.x

    CrossRef Google Scholar

    [14] 吴鹏,谢朋成,宋文龙,等. 基于根系形态的植物根系力学与固土护坡作用机理[J]. 东北林业大学学报,2014,42(5):139 − 142. [WU Peng,XIE Pengcheng,SONG Wenlong,et al. Morphology-based plant root mechanics and function mechanism for slope stabilization[J]. Journal of Northeast Forestry University,2014,42(5):139 − 142. (in Chinese with English abstract)

    Google Scholar

    WU Peng, XIE Pengcheng, SONG Wenlong, et al. Morphology-based plant root mechanics and function mechanism for slope stabilization[J]. Journal of Northeast Forestry University, 2014, 425): 139142. (in Chinese with English abstract)

    Google Scholar

    [15] LIANG T,KNAPPETT J A,DUCKETT N. Modelling the seismic performance of rooted slopes from individual root-soil interaction to global slope behaviour[J]. Géotechnique,2015,65(12):995 − 1009.

    Google Scholar

    [16] 姜尧,及金楠,刘迅,等. 基于仿生材料的根系固土力学机制[J]. 中国水土保持科学,2022,20(2):58 − 64. [JIANG Yao,JI Jinnan,LIU Xun,et al. Root reinforcement mechanism based on bionic materials[J]. Science of Soil and Water Conservation,2022,20(2):58 − 64. (in Chinese with English abstract) doi: 10.16843/j.sswc.2022.02.008

    CrossRef Google Scholar

    JIANG Yao, JI Jinnan, LIU Xun, et al. Root reinforcement mechanism based on bionic materials[J]. Science of Soil and Water Conservation, 2022, 202): 5864. (in Chinese with English abstract) doi: 10.16843/j.sswc.2022.02.008

    CrossRef Google Scholar

    [17] 潘露. 护坡灌木根系形态对根系力学特性影响研究[D]. 贵阳:贵州大学,2021. [PAN Lu. Study on the influence of root morphology of slope protection shrub on root mechanical characteristics[D]. Guiyang:Guizhou University,2021. (in Chinese with English abstract)

    Google Scholar

    PAN Lu. Study on the influence of root morphology of slope protection shrub on root mechanical characteristics[D]. Guiyang: Guizhou University, 2021. (in Chinese with English abstract)

    Google Scholar

    [18] 王智,于宁,黎静. 熔融沉积纤维增强复合材料的研究进展[J]. 材料导报,2021,35(15):15197 − 15204. [WANG Zhi,YU Ning,LI Jing. Research progress in fused deposition modeling of fiber-reinforced composites[J]. Materials Reports,2021,35(15):15197 − 15204. (in Chinese with English abstract)

    Google Scholar

    WANG Zhi, YU Ning, LI Jing. Research progress in fused deposition modeling of fiber-reinforced composites[J]. Materials Reports, 2021, 3515): 1519715204. (in Chinese with English abstract)

    Google Scholar

    [19] FAN Chiacheng. A displacement-based model for estimating the shear resistance of root-permeated soils[J]. Plant and Soil,2012,355:103 − 119. doi: 10.1007/s11104-011-1084-4

    CrossRef Google Scholar

    [20] OPERSTEIN V,FRYDMAN S. The influence of vegetation on soil strength[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2000,4(2):81 − 89. doi: 10.1680/grim.2000.4.2.81

    CrossRef Google Scholar

    [21] FAN Chiacheng,TSAI Minghung. Spatial distribution of plant root forces in root-permeated soils subject to shear[J]. Soil and Tillage Research,2016,156:1 − 15. doi: 10.1016/j.still.2015.09.016

    CrossRef Google Scholar

    [22] FAN Chiacheng,CHEN Yuwen. The effect of root architecture on the shearing resistance of root-permeated soils[J]. Ecological Engineering,2010,36(6):813 − 826. doi: 10.1016/j.ecoleng.2010.03.003

    CrossRef Google Scholar

    [23] 管世烽,夏振尧,张伦,等. 水平荷载作用下多花木蓝根系拉拔试验研究[J]. 长江科学院院报,2016,33(6):24 − 28. [GUAN Shifeng,XIA Zhenyao,ZHANG Lun,et al. Pull-out test of indigofera amblyantha craib root under horizontal load[J]. Journal of Yangtze River Scientific Research Institute,2016,33(6):24 − 28. (in Chinese with English abstract)

    Google Scholar

    GUAN Shifeng, XIA Zhenyao, ZHANG Lun, et al. Pull-out test of indigofera amblyantha craib root under horizontal load[J]. Journal of Yangtze River Scientific Research Institute, 2016, 336): 2428. (in Chinese with English abstract)

    Google Scholar

    [24] 韩朝,冀晓东,刘小光,等. 北方5种常见乔木根-土摩擦锚固性能研究[J]. 北京林业大学学报,2020,42(9):80 − 91. [HAN Chao,JI Xiaodong,LIU Xiaoguang,et al. Tribological properties between roots and soil of five common tree species in North China[J]. Journal of Beijing Forestry University,2020,42(9):80 − 91. (in Chinese with English abstract)

    Google Scholar

    HAN Chao, JI Xiaodong, LIU Xiaoguang, et al. Tribological properties between roots and soil of five common tree species in North China[J]. Journal of Beijing Forestry University, 2020, 429): 8091. (in Chinese with English abstract)

    Google Scholar

    [25] 那顺. 北沙柳等4种植物根-土界面拉拔摩阻特性研究[D]. 呼和浩特:内蒙古农业大学,2021. [NA Shun. The study on the friction drag characteristics of root-soil interface of four plants including Salix psammophila[D]. Hohhot:Inner Mongolia Agricultural University,2021. (in Chinese with English abstract)

    Google Scholar

    NA Shun. The study on the friction drag characteristics of root-soil interface of four plants including Salix psammophila[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese with English abstract)

    Google Scholar

    [26] COMMANDEUR P R,PYLES M R. Modulus of elasticity and tensile strength of Douglas-fir roots[J]. Canadian Journal of Forest Research,1991,21(1):48 − 52. doi: 10.1139/x91-007

    CrossRef Google Scholar

    [27] 郑力文,刘小光,余新晓,等. 油松根系直径对根-土界面摩擦性能的影响[J]. 北京林业大学学报,2014,36(3):90 − 94. [ZHENG Liwen,LIU Xiaoguang,YU Xinxiao,et al. Effects of root diameter of Pinus tabuliformis on friction characteristics for root-soil interface[J]. Journal of Beijing Forestry University,2014,36(3):90 − 94. (in Chinese with English abstract)

    Google Scholar

    ZHENG Liwen, LIU Xiaoguang, YU Xinxiao, et al. Effects of root diameter of Pinus tabuliformis on friction characteristics for root-soil interface[J]. Journal of Beijing Forestry University, 2014, 363): 9094. (in Chinese with English abstract)

    Google Scholar

    [28] SU Lijun,HU Bingli,XIE Qijun,et al. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection[J]. Journal of Mountain Science,2020,17(11):2784 − 2795. doi: 10.1007/s11629-020-6077-4

    CrossRef Google Scholar

    [29] 李国荣,胡夏嵩,毛小青,等. 寒旱环境黄土区灌木根系护坡力学效应研究[J]. 水文地质工程地质,2008,35(1):94 − 97. [LI Guorong,HU Xiasong,MAO Xiaoqing,et al. A study of the mechanical effects of shrub roots for slope protection in frigid and arid-semiarid loess area[J]. Hydrogeology & Engineering Geology,2008,35(1):94 − 97. (in Chinese with English abstract)

    Google Scholar

    LI Guorong, HU Xiasong, MAO Xiaoqing, et al. A study of the mechanical effects of shrub roots for slope protection in frigid and arid-semiarid loess area[J]. Hydrogeology & Engineering Geology, 2008, 351): 9497. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(845) PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint