2024 Vol. 51, No. 1
Article Contents

CHEN Fan, SHI Zheming, JIA Yongfeng, ZANG Yongge, LIAN Xinying, JIANG Yonghai, RAN Zeyu, SHANG Changjian. Polluted groundwater pump and treat system optimization based on weighted optimization method on the area[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 201-214. doi: 10.16030/j.cnki.issn.1000-3665.202212029
Citation: CHEN Fan, SHI Zheming, JIA Yongfeng, ZANG Yongge, LIAN Xinying, JIANG Yonghai, RAN Zeyu, SHANG Changjian. Polluted groundwater pump and treat system optimization based on weighted optimization method on the area[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 201-214. doi: 10.16030/j.cnki.issn.1000-3665.202212029

Polluted groundwater pump and treat system optimization based on weighted optimization method on the area

More Information
  • Well group layout is one of the key steps of groundwater recovery with pump and treat technology. In order to improve the remediation efficiency of pump and treat technology, a pollution field was taken as the research area, and a nonlinear-dynamic-multi-objective simulation-optimization model was established. The minimum capital cost, maximum pollutant removal rate and shortest remediation time were taken as the optimization objectives, and different extraction flows under single, double and three-well modes were set. The weighted optimization method is used to compare the well group layout scheme. The results show that: Overall, the single-well mode has poor remediation efficiency, when focusing on capital cost, the double-well pumping scheme is better overall, when focusing on the standard time, the mitsui-well pumping scheme is better overall; the single-well mode with constant flow is better than the multi-well modes, if the pumping flow is reduced appropriately in the late stage of the multi-well modes, the total amount of water pumped can be reduced and the capital cost can be saved, the dynamic management of well groups can improve the remediation efficiency. This study provides a reference for the application of weighted optimization method combined with numerical simulation method in well group layout optimization of pump and treat technology, and verifies the flexibility and practicability of weighted optimization method in well group optimization application.

  • 加载中
  • [1] FAN Yue,LU Wenxi,MIAO Tiansheng,et al. Optimal design of groundwater pollution monitoring network based on the SVR surrogate model under uncertainty[J]. Environmental Science and Pollution Research,2020,27(19):24090 − 24102. doi: 10.1007/s11356-020-08758-5

    CrossRef Google Scholar

    [2] 侯德义. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究,2022,35(9):2015 − 2025. [HOU Deyi. Ten grand challenges for groundwater pollution prevention and remediation at contaminated sites in China[J]. Research of Environmental Sciences,2022,35(9):2015 − 2025. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.04.18

    CrossRef Google Scholar

    HOU Deyi. Ten grand challenges for groundwater pollution prevention and remediation at contaminated sites in China[J]. Research of Environmental Sciences, 2022, 359): 20152025. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.04.18

    CrossRef Google Scholar

    [3] 席北斗,李娟,汪洋,等. 京津冀地区地下水污染防治现状、问题及科技发展对策[J]. 环境科学研究,2019,32(1):1 − 9. [XI Beidou,LI Juan,WANG Yang,et al. Strengthening the innovation capability of groundwater science and technology to support the coordinated development of beijing-Tianjin-hebei region:status quo,problems and goals[J]. Research of Environmental Sciences,2019,32(1):1 − 9. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2018.09.27

    CrossRef Google Scholar

    XI Beidou, LI Juan, WANG Yang, et al. Strengthening the innovation capability of groundwater science and technology to support the coordinated development of beijing-Tianjin-hebei region: status quo, problems and goals[J]. Research of Environmental Sciences, 2019, 321): 19. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2018.09.27

    CrossRef Google Scholar

    [4] 荣志昊,史学峰,李昌武,等. 地下水抽提井的优化布置[J]. 广东化工,2022,49(7):145 − 146. [RONG Zhihao,SHI Xuefeng,LI Changwu,et al. The optimization of groundwater pumping well layout[J]. Guangdong Chemical Industry,2022,49(7):145 − 146. (in Chinese with English abstract)

    Google Scholar

    RONG Zhihao, SHI Xuefeng, LI Changwu, et al. The optimization of groundwater pumping well layout[J]. Guangdong Chemical Industry, 2022, 497): 145146. (in Chinese with English abstract)

    Google Scholar

    [5] 张丽娜,姜林,贾晓洋,等. 地下水修复的技术不可达性及美国管理对策对我国的启示[J]. 环境科学研究,2022,35(5):1120 − 1130. [ZHANG Lina,JIANG Lin,JIA Xiaoyang,et al. Technical impracticability of groundwater remediation and management countermeasures in the USA and lessons learned for China[J]. Research of Environmental Sciences,2022,35(5):1120 − 1130. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.02.14

    CrossRef Google Scholar

    ZHANG Lina, JIANG Lin, JIA Xiaoyang, et al. Technical impracticability of groundwater remediation and management countermeasures in the USA and lessons learned for China[J]. Research of Environmental Sciences, 2022, 355): 11201130. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.02.14

    CrossRef Google Scholar

    [6] ZHA Yuanyuan,YEH T C J,ILLMAN W A,et al. Exploitation of pump-and-treat remediation systems for characterization of hydraulic heterogeneity[J]. Journal of Hydrology,2019,573:324 − 340. doi: 10.1016/j.jhydrol.2019.03.089

    CrossRef Google Scholar

    [7] BORTONE I,ERTO A,DI NARDO A,et al. pump-and-treat configurations with vertical and horizontal wells to remediate an aquifer contaminated by hexavalent chromium[J]. Journal of Contaminant Hydrology,2020,235:103725. doi: 10.1016/j.jconhyd.2020.103725

    CrossRef Google Scholar

    [8] 赵乐,苏春利,谢先军,等. 基于数值模拟的某纳污坑塘地下水砷污染修复技术设计[J]. 安全与环境工程,2020,27(6):74 − 80. [ZHAO Le,SU Chunli,XIE Xianjun,et al. Design of remediation technology for arsenic pollution of groundwater in a pollutant pond based on numerical simulation[J]. Safety and Environmental Engineering,2020,27(6):74 − 80. (in Chinese with English abstract)

    Google Scholar

    ZHAO Le, SU Chunli, XIE Xianjun, et al. Design of remediation technology for arsenic pollution of groundwater in a pollutant pond based on numerical simulation[J]. Safety and Environmental Engineering, 2020, 276): 7480. (in Chinese with English abstract)

    Google Scholar

    [9] COHEN R M, MERCER J W, GREENWALD R M, et al. Ground water issue: Design guidelines for conventional pump-and-treat systems[Z]. 1997:1-39.

    Google Scholar

    [10] 王平,韩占涛,张海领,等. 某氨氮污染地下水体抽出-处理系统优化模拟研究[J]. 水文地质工程地质,2020,47(3):34 − 43. [WANG Ping,HAN Zhantao,ZHANG Hailing,et al. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology,2020,47(3):34 − 43. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201907053

    CrossRef Google Scholar

    WANG Ping, HAN Zhantao, ZHANG Hailing, et al. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology, 2020, 473): 3443. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201907053

    CrossRef Google Scholar

    [11] 姜烈,何江涛,姜永海,等. 地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学,2014,35(7):2572 − 2578. [JIANG Lie,HE Jiangtao,JIANG Yonghai,et al. Simulation of nitrate pollution in groundwater using pump-and-treat optimization method[J]. Environmental Science,2014,35(7):2572 − 2578. (in Chinese with English abstract) doi: 10.13227/j.hjkx.2014.07.019

    CrossRef Google Scholar

    JIANG Lie, HE Jiangtao, JIANG Yonghai, et al. Simulation of nitrate pollution in groundwater using pump-and-treat optimization method[J]. Environmental Science, 2014, 357): 25722578. (in Chinese with English abstract) doi: 10.13227/j.hjkx.2014.07.019

    CrossRef Google Scholar

    [12] 杜川,李厚恩,陈素云. 数值模拟技术在污染地下水抽出-处理运行中的应用[J]. 环境工程,2023,41(7):102 − 108. [DU Chuan,LI Houen,CHEN Suyun. Application of numerical simulation technology in extraction andtreatment of polluted groundwater[J]. Environmental Engineering,2023,41(7):102 − 108. (in Chinese with English abstract)

    Google Scholar

    DU Chuan, LI Houen, CHEN Suyun. Application of numerical simulation technology in extraction andtreatment of polluted groundwater[J]. Environmental Engineering, 2023, 417): 102108. (in Chinese with English abstract)

    Google Scholar

    [13] MANTOGLOU A,KOURAKOS G. Optimal groundwater remediation under uncertainty using multi-objective optimization[J]. Water Resources Management,2007,21(5):835 − 847. doi: 10.1007/s11269-006-9109-0

    CrossRef Google Scholar

    [14] HOU Zeyu,LU Wenxi,XUE Haibo,et al. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization[J]. Journal of Contaminant Hydrology,2017,203:28 − 37. doi: 10.1016/j.jconhyd.2017.06.003

    CrossRef Google Scholar

    [15] BECKER D,MINSKER B,GREENWALD R,et al. Reducing long-term remedial costs by transport modeling optimization[J]. Groundwater,2006,44(6):864 − 875. doi: 10.1111/j.1745-6584.2006.00242.x

    CrossRef Google Scholar

    [16] 李娟,尉鹏,戴学之,等. 基于机器学习方法的西安市数值模拟优化研究[J]. 环境科学研究,2021,34(4):872 − 881. [LI Juan,YU Peng,DAI Xuezhi,et al. Optimization of numerical simulation in Xi’ an based on machine learning methods[J]. Research of Environmental Sciences,2021,34(4):872 − 881. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2020.10.27

    CrossRef Google Scholar

    LI Juan, YU Peng, DAI Xuezhi, et al. Optimization of numerical simulation in Xi’ an based on machine learning methods[J]. Research of Environmental Sciences, 2021, 344): 872881. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2020.10.27

    CrossRef Google Scholar

    [17] 闫佰忠,徐文杰,李玉涵,等. 地下水源热泵抽灌井优化布置及参数灵敏度[J]. 吉林大学学报(地球科学版),2023,53(1):218 − 229. [YAN Baizhong,XU Wenjie,LI Yuhan,et al. Optimal layout of pumping and recharging wells for groundwater source heat pump and parameter sensitivity[J]. Journal of Jilin University (Earth Science Edition),2023,53(1):218 − 229. (in Chinese with English abstract)

    Google Scholar

    YAN Baizhong, XU Wenjie, LI Yuhan, et al. Optimal layout of pumping and recharging wells for groundwater source heat pump and parameter sensitivity[J]. Journal of Jilin University (Earth Science Edition), 2023, 531): 218229. (in Chinese with English abstract)

    Google Scholar

    [18] AHLFELD D P,MULVEY J M,PINDER G F,et al. Contaminated groundwater remediation design using simulation,optimization,and sensitivity theory:1. Model development[J]. Water Resources Research,1988,24(3):431 − 441. doi: 10.1029/WR024i003p00431

    CrossRef Google Scholar

    [19] AHLFELD D P,MULVEY J M,PINDER G F. Contaminated groundwater remediation design using simulation,optimization,and sensitivity theory:2. Analysis of a field site[J]. Water Resources Research,1988,24(3):443 − 452. doi: 10.1029/WR024i003p00443

    CrossRef Google Scholar

    [20] MCKINNEY D C,LIN M D. Genetic algorithm solution of groundwater management models[J]. Water Resources Research,1994,30(6):1897 − 1906. doi: 10.1029/94WR00554

    CrossRef Google Scholar

    [21] CULVER T B,SHOEMAKER C A. Optimal control for groundwater remediation by differential dynamic programming with Quasi-Newton Approximations[J]. Water Resources Research,1993,29(4):823 − 831. doi: 10.1029/92WR02480

    CrossRef Google Scholar

    [22] 王浩然. 地下水开采条件下的微分动态规划模型[D]. 南京:南京大学,2000. [WANG Haoran. Differential dynamic programming model under the condition of groundwater exploitation[D]. Nanjing:Nanjing University,2000. (in Chinese with English abstract)

    Google Scholar

    WANG Haoran. Differential dynamic programming model under the condition of groundwater exploitation[D]. Nanjing: Nanjing University, 2000. (in Chinese with English abstract)

    Google Scholar

    [23] CULVER T B,SHENK G W. Dynamic optimal ground water remediation by granular activated carbon[J]. Journal of Water Resources Planning and Management,1998,124(1):59 − 64. doi: 10.1061/(ASCE)0733-9496(1998)124:1(59)

    CrossRef Google Scholar

    [24] 宫志强,刘明柱,刘伟江,等. 单井捕获地下水污染羽的优化方法[J]. 环境工程学报,2019,13(10):2468 − 2474. [GONG Zhiqiang,LIU Mingzhu,LIU Weijiang,et al. Optimal method of groundwater pollution plume capture by single well[J]. Chinese Journal of Environmental Engineering,2019,13(10):2468 − 2474. (in Chinese with English abstract) doi: 10.12030/j.cjee.201812028

    CrossRef Google Scholar

    GONG Zhiqiang, LIU Mingzhu, LIU Weijiang, et al. Optimal method of groundwater pollution plume capture by single well[J]. Chinese Journal of Environmental Engineering, 2019, 1310): 24682474. (in Chinese with English abstract) doi: 10.12030/j.cjee.201812028

    CrossRef Google Scholar

    [25] REZAEI H,BOZORG-HADDAD O,LOÁICIGA H A. Reliability-based multi-objective optimization of groundwater remediation[J]. Water Resources Management,2020,34(10):3079 − 3097. doi: 10.1007/s11269-020-02573-w

    CrossRef Google Scholar

    [26] YANG Yun,WU Jichun,LUO Qiankun,et al. An effective multi-objective optimization approach for groundwater remediation considering the coexisting uncertainties of aquifer parameters[J]. Journal of Hydrology,2022,609:127677. doi: 10.1016/j.jhydrol.2022.127677

    CrossRef Google Scholar

    [27] 林茂,苏婧,孙源媛,等. 基于脆弱性的地下水污染监测网多目标优化方法[J]. 环境科学研究,2018,31(1):79 − 86. [LIN Mao,SU Jing,SUN Yuanyuan,et al. Multi-objective optimization method for groundwater contamination monitoring network based on vulnerability assessment[J]. Research of Environmental Sciences,2018,31(1):79 − 86. (in Chinese with English abstract)

    Google Scholar

    LIN Mao, SU Jing, SUN Yuanyuan, et al. Multi-objective optimization method for groundwater contamination monitoring network based on vulnerability assessment[J]. Research of Environmental Sciences, 2018, 311): 7986. (in Chinese with English abstract)

    Google Scholar

    [28] 张艳. 污染场地抽出—处理技术影响因素及优化方案研究[D]. 北京:中国地质大学(北京),2010. [ZHANG Yan. Factors and optimization research of pump-and-treat technology in contaminated site[D]. Beijing:China University of Geosciences,2010. (in Chinese with English abstract)

    Google Scholar

    ZHANG Yan. Factors and optimization research of pump-and-treat technology in contaminated site[D]. Beijing: China University of Geosciences, 2010. (in Chinese with English abstract)

    Google Scholar

    [29] 鞠晓明. 地下水污染场地水力控制优化方案研究[D]. 北京:中国地质大学(北京),2011. [JU Xiaoming. Optimization of hydraulic control programs for groundwater contaminated sites[D]. Beijing:China University of Geosciences,2011. (in Chinese with English abstract)

    Google Scholar

    JU Xiaoming. Optimization of hydraulic control programs for groundwater contaminated sites[D]. Beijing: China University of Geosciences, 2011. (in Chinese with English abstract)

    Google Scholar

    [30] 牛浩博,魏亚强,李璐,等. 基于数值模拟的某地下水污染场地抽水方案设计[J]. 环境保护科学,2021,47(5):69 − 75. [NIU Haobo,WEI Yaqiang,LI Lu,et al. Design of pumping project for a groundwater contaminated site based on numerical simulation[J]. Environmental Protection Science,2021,47(5):69 − 75. (in Chinese with English abstract) doi: 10.16803/j.cnki.issn.1004-6216.2021.05.012

    CrossRef Google Scholar

    NIU Haobo, WEI Yaqiang, LI Lu, et al. Design of pumping project for a groundwater contaminated site based on numerical simulation[J]. Environmental Protection Science, 2021, 475): 6975. (in Chinese with English abstract) doi: 10.16803/j.cnki.issn.1004-6216.2021.05.012

    CrossRef Google Scholar

    [31] 中国地质调查局. 水文地质手册[M]. 北京:地质出版社,2012. [China Geological Survey. Handbook of hydrogeology[M]. Beijing:Geological Publishing House,2012. (in Chinese with English abstract)

    Google Scholar

    China Geological Survey. Handbook of hydrogeology[M]. Beijing: Geological Publishing House, 2012. (in Chinese with English abstract)

    Google Scholar

    [32] 刘玲,陈坚,牛浩博,等. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质,2022,49(1):164 − 174. [LIU Ling,CHEN Jian,NIU Haobo,et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology,2022,49(1):164 − 174. (in Chinese with English abstract)

    Google Scholar

    LIU Ling, CHEN Jian, NIU Haobo, et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 491): 164174. (in Chinese with English abstract)

    Google Scholar

    [33] 万鹏,张旭,李广贺,等. 基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究,2016,29(11):1608 − 1616. [WAN Peng,ZHANG Xu,LI Guanghe,et al. Designof contaminant groundwater pumping scheme based on a simulation optimization model[J]. Research of Environmental Sciences,2016,29(11):1608 − 1616. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2016.11.06

    CrossRef Google Scholar

    WAN Peng, ZHANG Xu, LI Guanghe, et al. Designof contaminant groundwater pumping scheme based on a simulation optimization model[J]. Research of Environmental Sciences, 2016, 2911): 16081616. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2016.11.06

    CrossRef Google Scholar

    [34] 卞荣伟,宋健,孙晓敏,等. MGO软件在地下水污染抽出-处理方案优化中的应用[J]. 地下水,2018,40(3):12 − 15. [BIAN Rongwei,SONG Jian,SUN Xiaomin,et al. Application of MGO to optimal design of pump and treat system in groundwater contamination remediation[J]. Ground Water,2018,40(3):12 − 15. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2018.03.004

    CrossRef Google Scholar

    BIAN Rongwei, SONG Jian, SUN Xiaomin, et al. Application of MGO to optimal design of pump and treat system in groundwater contamination remediation[J]. Ground Water, 2018, 403): 1215. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2018.03.004

    CrossRef Google Scholar

    [35] 张然. 污水处理成本结构及变化趋势研究——基于污水处理上市公司数据的分析[J]. 价格理论与实践,2020(10):27 − 30. [ZHANG Ran. Research on structure and change trend of sewage treatment cost—analysis based on the date of sewage treatment listed companies[J]. Price:Theory & Practice,2020(10):27 − 30. (in Chinese with English abstract) doi: 10.19851/j.cnki.CN11-1010/F.2020.10.428

    CrossRef Google Scholar

    ZHANG Ran. Research on structure and change trend of sewage treatment cost—analysis based on the date of sewage treatment listed companies[J]. Price: Theory & Practice, 202010): 2730. (in Chinese with English abstract) doi: 10.19851/j.cnki.CN11-1010/F.2020.10.428

    CrossRef Google Scholar

    [36] 宫志强,陈坚,杨鑫鑫,等. 某铬污染场地地下水抽水方案优化[J]. 环境工程,2019,37(5):1 − 3. [GONG Zhiqiang,CHEN Jian,YANG Xinxin,et al. Optimization of groundwater pumping scheme in a chromium-contaminated site[J]. Environmental Engineering,2019,37(5):1 − 3. (in Chinese with English abstract)

    Google Scholar

    GONG Zhiqiang, CHEN Jian, YANG Xinxin, et al. Optimization of groundwater pumping scheme in a chromium-contaminated site[J]. Environmental Engineering, 2019, 375): 13. (in Chinese with English abstract)

    Google Scholar

    [37] KO N Y,LEE Kangkun,HYUN Y. Optimal groundwater remediation design of a pump and treat system considering clean-up time[J]. Geosciences Journal,2005,9(1):23 − 31. doi: 10.1007/BF02910551

    CrossRef Google Scholar

    [38] 孙军亮,宫志强,李璐,等. 某氯代烃污染场地地下水抽出方案优化[J]. 环境工程,2021,39(11):172 − 178. [SUN Junliang,GONG Zhiqiang,LI Lu,et al. Optimization of groundwater pumping scheme for a chlorinated hydrocarbon-contaminated site[J]. Environmental Engineering,2021,39(11):172 − 178. (in Chinese with English abstract)

    Google Scholar

    SUN Junliang, GONG Zhiqiang, LI Lu, et al. Optimization of groundwater pumping scheme for a chlorinated hydrocarbon-contaminated site[J]. Environmental Engineering, 2021, 3911): 172178. (in Chinese with English abstract)

    Google Scholar

    [39] 耿国婷,武晓峰,游进军. 基于遗传算法的TCE污染地下水修复抽水处理优化方案研究[J]. 水利水电技术(中英文),2022,53(7):69 − 81. [GENG Guoting,WU Xiaofeng,YOU Jinjun. Genetic algorithm-based study on optimization scheme for remediation of TCE-contaminated groundwater with pump-and-treat system[J]. Water Resources and Hydropower Engineering,2022,53(7):69 − 81. (in Chinese with English abstract)

    Google Scholar

    GENG Guoting, WU Xiaofeng, YOU Jinjun. Genetic algorithm-based study on optimization scheme for remediation of TCE-contaminated groundwater with pump-and-treat system[J]. Water Resources and Hydropower Engineering, 2022, 537): 6981. (in Chinese with English abstract)

    Google Scholar

    [40] 白相东,张艳,刘智荣,等. 某冶炼厂污染场地抽出-处理技术优化方案研究[J]. 防灾科技学院学报,2012,14(4):23 − 26. [BAI Xiangdong,ZHANG Yan,LIU Zhirong,et al. pump and retreat—processing optimization plan of a smelter contaminated site[J]. Journal of Institute of Disaster Prevention,2012,14(4):23 − 26. (in Chinese with English abstract)

    Google Scholar

    BAI Xiangdong, ZHANG Yan, LIU Zhirong, et al. pump and retreat—processing optimization plan of a smelter contaminated site[J]. Journal of Institute of Disaster Prevention, 2012, 144): 2326. (in Chinese with English abstract)

    Google Scholar

    [41] 周新民,郭瑜. 多指标决策的主客观权重模糊优选法[C]// 第28届中国控制与决策会议论文集. 银川,2016:380−384. [ZHOU Xinmin,GUO Yu. Multi objective decision for the fuzzy optimization method of subjective and objective weight[C]//Proceedings of 2016 28th Chinese Control and Decision Conference(CCDC). Yinchuan,2016:380−384. (in Chinese with English abstract)

    Google Scholar

    ZHOU Xinmin, GUO Yu. Multi objective decision for the fuzzy optimization method of subjective and objective weight[C]//Proceedings of 2016 28th Chinese Control and Decision Conference(CCDC). Yinchuan, 2016: 380−384. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(5)

Article Metrics

Article views(1093) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint