2023 Vol. 50, No. 6
Article Contents

TANG Yaning, WANG Xinghua, WANG Yingnan, LI Xiaoqian, SONG Xiaodong. Mechanism of action of Fe(III) on antimony release under anoxic acidic conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 175-183. doi: 10.16030/j.cnki.issn.1000-3665.202212026
Citation: TANG Yaning, WANG Xinghua, WANG Yingnan, LI Xiaoqian, SONG Xiaodong. Mechanism of action of Fe(III) on antimony release under anoxic acidic conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 175-183. doi: 10.16030/j.cnki.issn.1000-3665.202212026

Mechanism of action of Fe(III) on antimony release under anoxic acidic conditions

More Information
  • Oxidative dissolution of stibnite (Sb2S3) is the primary process that controls the release of antimony (Sb) from rock and ore into the soil and water environment and affects its transport and transformation. Fe(III) in acid mine wastewater is a widespread natural oxidant in the mine environment. However, the role of Fe(III) on the oxidative dissolution of Sb2S3 and Sb release is unknown. By simulating a dark anoxic and acidic mine groundwater environment, this study conducted Fe(III) concentration to Sb2S3 surface area ratio (I) controlled Sb2S3 oxidative dissolution kinetics experiments, and combined the dissolved state composition and solid phase characterization means of S-Sb-Fe redox products to reveal the mechanism of Fe(III) action on Sb release. The results show that the oxidative dissolution of Sb2S3 under the action of Fe(III) is an acid-producing process, and the larger the I value is, the more obvious the promotion effect of Fe(III) on Sb release. Under anoxic conditions, Fe(III) undergoes redox with Sb2S3, and the main products are Sb(V), S(0) and Fe(II). After the reaction, S(0) and Fe2O3 were detected on the mineral surface, which hindered the continuation of the oxidative dissolution reaction of Sb2S3. At a certain value of I, both the low concentration of Fe(III) and the increase of dissolved oxygen (DO) will reduce the attachment of S(0) on the mineral surface and promote the increase of Sb release; the Cl in solution will promote the dissolution release of Sb2S3 through the coordination complexation effect. The interaction between Fe(III) and Sb2S3 under anoxic acidic conditions controls the release of Sb, which can provide an important theoretical basis for prevention and control of groundwater Sb contamination after mine pit closure.

  • 加载中
  • [1] SONG Congbo,WU Lin,XIE Yaochen,et al. Air pollution in China:Status and spatiotemporal variations[J]. Environmental Pollution,2017,227:334 − 347. doi: 10.1016/j.envpol.2017.04.075

    CrossRef Google Scholar

    [2] FILELLA M,BELZILE N,CHEN Yuwei. Antimony in the environment:A review focused on natural waters[J]. Earth-Science Reviews,2002,57(1/2):125 − 176.

    Google Scholar

    [3] SHOTYK W,CHEN Bin,KRACHLER M. Lithogenic,oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog,Myrarnar,Faroe Islands[J]. Journal of Environmental Monitoring,2005,7(12):1148 − 1154. doi: 10.1039/b509928p

    CrossRef Google Scholar

    [4] KRACHLER M,ZHENG J,KOERNER R,et al. Increasing atmospheric antimony contamination in the Northern Hemisphere:Snow and ice evidence from Devon Island,Arctic Canada[J]. Journal of Environmental Monitoring,2005,7(12):1169 − 1176. doi: 10.1039/b509373b

    CrossRef Google Scholar

    [5] HU Xingyun,HE Mengchang,LI Sisi,et al. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China[J]. Journal of Geochemical Exploration,2017,176:76 − 84. doi: 10.1016/j.gexplo.2016.01.009

    CrossRef Google Scholar

    [6] 刘晓芸,刘晶晶,柯勇,等. 水体中锑的形态及转化规律研究进展[J]. 中国有色金属学报,2021,31(5):1330 − 1346. [LIU Xiaoyun,LIU Jingjing,KE Yong,et al. Research progress on speciation of antimony in natural water[J]. The Chinese Journal of Nonferrous Metals,2021,31(5):1330 − 1346. (in Chinese with English abstract)

    Google Scholar

    LIU Xiaoyun, LIU Jingjing, KE Yong, et al. Research progress on speciation of antimony in natural water[J]. The Chinese Journal of Nonferrous Metals, 2021, 315): 13301346. (in Chinese with English abstract).

    Google Scholar

    [7] 丁建华,叶会寿,张勇,等. 扬子地块北缘大幕山地区锑矿成矿预测[J]. 地质通报,2022,41(7):1237 − 1248. [DING Jianhua,YE Huishou,ZHANG Yong,et al. Metallogenic prognosis of antimony deposits in Damushan area,north margin of Yangtze block[J]. Geological Bulletin of China,2022,41(7):1237 − 1248. (in Chinese with English abstract)

    Google Scholar

    DING Jianhua, YE Huishou, ZHANG Yong, et al. Metallogenic prognosis of antimony deposits in Damushan area, north margin of Yangtze block[J]. Geological Bulletin of China, 2022, 417): 12371248. (in Chinese with English abstract).

    Google Scholar

    [8] WEN Bing,ZHOU Jianwei,ZHOU Aiguo,et al. Sources,migration and transformation of antimony contamination in the water environment of Xikuangshan,China:Evidence from geochemical and stable isotope (S,Sr) signatures[J]. Science of the Total Environment,2016,569/570:114 − 122. doi: 10.1016/j.scitotenv.2016.05.124

    CrossRef Google Scholar

    [9] FANG Ling,ZHOU Aiguo,LI Xiaoqian,et al. Response of antimony and arsenic in Karst aquifers and groundwater geochemistry to the influence of mine activities at the world’s largest antimony mine,central China[J]. Journal of Hydrology,2021,603:127131. doi: 10.1016/j.jhydrol.2021.127131

    CrossRef Google Scholar

    [10] 李琬钰, 周建伟, 贾晓岑, 等. 湖南锡矿山锑矿区水环境中DOM三维荧光特征及其对锑污染的指示意义[J]. 地质科技通报,2022,41(4):215 − 224. [LI Wanyu, ZHOU Jianwei, JIA Xiaocen, et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology,2022,41(4):215 − 224. (in Chinese with English abstract)

    Google Scholar

    LI Wanyu, ZHOU Jianwei, JIA Xiaocen, et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology, 2022, 414): 215224. (in Chinese with English abstract)

    Google Scholar

    [11] ZHOU Jianwei,NYIRENDA M T,XIE Lina,et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan Mine,China[J]. Applied Geochemistry,2017,77:52 − 61. doi: 10.1016/j.apgeochem.2016.04.010

    CrossRef Google Scholar

    [12] GUO Wenjing,FU Zhiyou,WANG Hao,et al. Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan,China[J]. Microchemical Journal,2018,137:181 − 189. doi: 10.1016/j.microc.2017.10.010

    CrossRef Google Scholar

    [13] BIVER M,SHOTYK W. Stibnite (Sb2S3) oxidative dissolution kinetics from pH 1 to 11[J]. Geochimica et Cosmochimica Acta,2012,79:127 − 139. doi: 10.1016/j.gca.2011.11.033

    CrossRef Google Scholar

    [14] BIVER M,SHOTYK W. Experimental study of the kinetics of ligand-promoted dissolution of stibnite (Sb2S3)[J]. Chemical Geology,2012,294/295:165 − 172. doi: 10.1016/j.chemgeo.2011.11.009

    CrossRef Google Scholar

    [15] HU Xingyun,HE Mengchang,KONG Linghao. Photopromoted oxidative dissolution of stibnite[J]. Applied Geochemistry,2015,61:53 − 61. doi: 10.1016/j.apgeochem.2015.05.014

    CrossRef Google Scholar

    [16] YAN Li,CHAN Tingshan,JING Chuanyong. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite[J]. Environmental Pollution,2020,262:114309. doi: 10.1016/j.envpol.2020.114309

    CrossRef Google Scholar

    [17] LONI P C,WU Mengxiaojun,WANG Weiqi,et al. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions[J]. Journal of Hazardous Materials,2020,385:121561. doi: 10.1016/j.jhazmat.2019.121561

    CrossRef Google Scholar

    [18] XIANG Li,LIU Chaoyang,LIU Deng,et al. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1[J]. Journal of Environmental Sciences,2022,111:273 − 281. doi: 10.1016/j.jes.2021.03.042

    CrossRef Google Scholar

    [19] 李立刚,周建伟,李伟洁,等. 某特大型锑矿区废石中锑的释放规律[J]. 地质科技情报,2018,37(5):215 − 221. [LI Ligang,ZHOU Jianwei,LI Weijie,et al. Antimony release characteristics of waste rock from an extra large antimony mining area[J]. Geological Science and Technology Information,2018,37(5):215 − 221. (in Chinese with English abstract)

    Google Scholar

    LI Ligang, ZHOU Jianwei, LI Weijie, et al. Antimony release characteristics of waste rock from an extra large antimony mining area[J]. Geological Science and Technology Information, 2018, 375): 215221. (in Chinese with English abstract).

    Google Scholar

    [20] 方传棣,成金华,赵鹏大,等. 长江经济带矿区土壤重金属污染特征与评价[J]. 地质科技情报,2019,38(5):230 − 239. [FANG Chuandi,CHENG Jinhua,ZHAO Pengda,et al. Characteristics and evaluation of heavy metal pollution in soils of mining areas in the Yangtze River economic belt[J]. Geological Science and Technology Information,2019,38(5):230 − 239. (in Chinese with English abstract)

    Google Scholar

    FANG Chuandi, CHENG Jinhua, ZHAO Pengda, et al. Characteristics and evaluation of heavy metal pollution in soils of mining areas in the Yangtze River economic belt[J]. Geological Science and Technology Information, 2019, 385): 230239. (in Chinese with English abstract).

    Google Scholar

    [21] 武亚遵,潘春芳,林云,等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报,2018,37(5):191 − 199. [WU Yazun,PAN Chunfang,LIN Yun,et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China Coalfield[J]. Geological Science and Technology Information,2018,37(5):191 − 199. (in Chinese with English abstract)

    Google Scholar

    WU Yazun, PAN Chunfang, LIN Yun, et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China Coalfield[J]. Geological Science and Technology Information, 2018, 375): 191199. (in Chinese with English abstract).

    Google Scholar

    [22] 李小倩,张彬,周爱国,等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质,2014,41(6):103 − 109. [LI Xiaoqian,ZHANG Bin,ZHOU Aiguo,et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology,2014,41(6):103 − 109. (in Chinese with English abstract)

    Google Scholar

    LI Xiaoqian, ZHANG Bin, ZHOU Aiguo, et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology, 2014, 416): 103109. (in Chinese with English abstract).

    Google Scholar

    [23] 李晓艳,张青伟,洪松涛,等. 不同氧化还原条件下铅锌矿尾砂中重金属元素活化迁移规律[J]. 吉林大学学报(地球科学版),2022,52(2):434 − 441. [LI Xiaoyan,ZHANG Qingwei,HONG Songtao,et al. Activation and migration of heavy metal elements in lead zinc ore tailings under different redox conditions[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):434 − 441. (in Chinese with English abstract)

    Google Scholar

    LI Xiaoyan, ZHANG Qingwei, HONG Songtao, et al. Activation and migration of heavy metal elements in lead zinc ore tailings under different redox conditions[J]. Journal of Jilin University (Earth Science Edition), 2022, 522): 434441. (in Chinese with English abstract).

    Google Scholar

    [24] 张进德,田磊,裴圣良. 矿山水土污染与防治对策研究[J]. 水文地质工程地质,2021,48(2):157 − 163. [ZHANG Jinde,TIAN Lei,PEI Shengliang. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology,2021,48(2):157 − 163. (in Chinese with English abstract)

    Google Scholar

    ZHANG Jinde, TIAN Lei, PEI Shengliang. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology, 2021, 482): 157163. (in Chinese with English abstract).

    Google Scholar

    [25] GLEISNER M,HERBERT R B,FROGNER KOCKUM P C. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology,2006,225(1/2):16 − 29.

    Google Scholar

    [26] KONG Linghao,HE Mengchang,HU Xingyun. Rapid photooxidation of Sb(III) in the presence of different Fe(III) species[J]. Geochimica et Cosmochimica Acta,2016,180:214 − 226. doi: 10.1016/j.gca.2016.02.022

    CrossRef Google Scholar

    [27] 李大塘,王辉宪. 水解平衡与三硫化二锑的溶解性[J]. 化学教育,2001(11):44 − 45. [LI Datang,WANG Huixian. Hydrolysis equilibrium and solubility of antimony trisulfide[J]. Journal of Chemical Education,2001(11):44 − 45. (in Chinese)

    Google Scholar

    LI Datang, WANG Huixian. Hydrolysis equilibrium and solubility of antimony trisulfide[J]. Journal of Chemical Education, 200111): 4445. (in Chinese).

    Google Scholar

    [28] 江南,李小倩,周爱国,等. pH值和氧化剂对硫化锑氧化溶解的影响机制[J]. 地质科技通报,2020,39(4):76 − 84. [JIANG Nan,LI Xiaoqian,ZHOU Aiguo,et al. Effect of pH value and Fe(III) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology,2020,39(4):76 − 84. (in Chinese with English abstract)

    Google Scholar

    JIANG Nan, LI Xiaoqian, ZHOU Aiguo, et al. Effect of pH value and Fe(III) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology, 2020, 394): 7684. (in Chinese with English abstract).

    Google Scholar

    [29] HERATH I,VITHANAGE M,BUNDSCHUH J. Antimony as a global dilemma:Geochemistry,mobility,fate and transport[J]. Environmental Pollution,2017,223:545 − 559. doi: 10.1016/j.envpol.2017.01.057

    CrossRef Google Scholar

    [30] BORILOVA S,MANDL M,ZEMAN J,et al. Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans?[J]. Frontiers in Microbiology,2018,9:3134. doi: 10.3389/fmicb.2018.03134

    CrossRef Google Scholar

    [31] 陆现彩,李娟,刘欢,等. 金属硫化物微生物氧化的机制和效应[J]. 岩石学报,2019,35(1):153 − 163. [LU Xiancai,LI Juan,LIU Huan,et al. Microbial oxidation of metal sulfides and its consequences[J]. Acta Petrologica Sinica,2019,35(1):153 − 163. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.01.12

    CrossRef Google Scholar

    LU Xiancai, LI Juan, LIU Huan, et al. Microbial oxidation of metal sulfides and its consequences[J]. Acta Petrologica Sinica, 2019, 351): 153163. (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.12

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(840) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint