Citation: | YANG Zhiyong, ZHU Junwei, YANG Xing, SHAO Xiaokang, JIANG Yusheng, WANG Yunlong. An improved soil abrasion testing method for shield tunnelling based on LCPC[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 90-98. doi: 10.16030/j.cnki.issn.1000-3665.202211036 |
The Labroatoire Central de Ponts et Chaussées (LCPC) test is a commonly used method to test the abrasivity of soil, however, the existing LCPC tests have some shortcomings in evaluating the abrasivity of shield tunnel soil, such as the high effective breakage rate of soil particles and large changes in particle size distribution during testing. In view of this, a circular steel sheet is used to replace the original rectangular steel sheet, and a comparative test is carried out. The test results show that the improved circular steel sheet significantly reduces the effective breakage rate of soil samples compared with the rectangular steel sheet, and improves the stability of particle size distribution in the LCPC test. The wear of the circle steel sheet in the test process is mainly abrasive wear, which effectively eliminates the impact wear and is more in line with the characteristics of shield tunnel engineering. The analysis shows that the conversion relationship between the two LCPC abrasivity coefficients is LAC矩=0.93LAC圆 when abrasive wear is the main wear. The improved testing method accurately evaluates the abrasivity of the pebble layer crossed by the shield tunnel sections Youanmen-Niujie of Beijing Subway Line 19 and 3# Fengjing-Caoqiao of the Beijing Daxing International Airport Line. This study improves the accuracy of the LCPC test method in evaluating the soil abrasion of shield tunnel.
[1] |
周建军,宋佳鹏,谭忠盛. 砂卵石地层地铁盾构盘形滚刀磨蚀性研究[J]. 土木工程学报,2017,50(增刊1):31 − 35. [ZHOU Jianjun,SONG Jiapeng,TAN Zhongsheng. Study on abrasive properties of shielded hob in subway shield of sandy gravel formation[J]. China Civil Engineering Journal,2017,50(Sup 1):31 − 35. (in Chinese with English abstract)
|
[2] |
付钊,柯宁静,卢康明,等. 深埋小净距多线平行盾构掘进相互作用分析[J]. 水文地质工程地质,2021,48(2):44 − 54. [FU Zhao,KE Ningjing,LU Kangming,et al. An analysis of interaction of deep buried close approaching multi-line parallel shield tunneling[J]. Hydrogeology & Engineering Geology,2021,48(2):44 − 54. (in Chinese with English abstract)
|
[3] | 胡焕校,杨万松,孙端阳. 长沙板岩地层地铁盾构施工渣土改良试验研究[J]. 水文地质工程地质,2018,45(4):100 − 107. [HU Huanxiao,YANG Wansong,SUN Duanyang. Soil conditioning test for EPB shield tunneling in slate stratum in the Changsha region[J]. Hydrogeology & Engineering Geology,2018,45(4): 100 − 107. (in Chinese with English abstract) |
[4] |
杨志勇,王霆,江玉生. 无水砂卵石地层土压平衡盾构主动换刀技术研究[J]. 现代隧道技术,2016,53(1):147 − 152. [YANG Zhiyong,WANG Ting,JIANG Yusheng. Active cutter replacement techniques for EPB shield tunnelling in a waterless sandy cobble stratum[J]. Modern Tunnelling Technology,2016,53(1):147 − 152. (in Chinese with English abstract) doi: 10.13807/j.cnki.mtt.2016.01.022
|
[5] |
杨育. 厦门轨道交通3号线跨海段盾构滚刀磨损预测[J]. 隧道建设(中英文),2018,38(增刊1):182 − 187. [YANG Yu. Prediction of disc cutter wear of shield used in sea-crossing section on Xiamen rail transit line No. 3[J]. Tunnel Construction,2018,38(Sup 1):182 − 187. (in Chinese with English abstract)
|
[6] |
蔡昱,祝和意,杨小玉,等. 引汉济渭秦岭隧洞高磨蚀性硬岩TBM滚刀磨损试验研究[J]. 隧道建设(中英文),2018,38(9):1579 − 1584. [CAI Yu,ZHU Heyi,YANG Xiaoyu,et al. Experimental study of disc cutter abrasion of TBM used in Qinling tunnel of Hanjiang River-Weihe River water conveyance project with high abrasive hard rock[J]. Tunnel Construction,2018,38(9):1579 − 1584. (in Chinese with English abstract)
|
[7] |
潘涛. 软土地区双线区间盾构隧道施工对周边地表以及建筑物沉降的影响[J]. 水文地质工程地质,2022,49(1):101 − 108. [PAN Tao. Influences of double-track shield tunnel construction on settlements of adjacent ground and buildings in a soft soil area[J]. Hydrogeology & Engineering Geology,2022,49(1):101 − 108. (in Chinese with English abstract)
|
[8] |
苏永华,王栋. 基于离散元法的砂石混合体直剪试验结果分析[J]. 水文地质工程地质,2021,48(6):97 − 104. [SU Yonghua,WANG Dong. An analysis of direct shear test results of sand-gravel mixture based on the discrete element method[J]. Hydrogeology & Engineering Geology,2021,48(6):97 − 104. (in Chinese with English abstract)
|
[9] |
张晓平,唐少辉,吴坚,等. 苏通GIL综合管廊工程泥水盾构穿越致密复合砂层磨蚀性预测分析[J]. 工程地质学报,2017,25(5):1364 − 1373. [ZHANG Xiaoping,TANG Shaohui,WU Jian,et al. Prediction and analysis of abrasiveness of dense sandy stratum by slurry shield at Sutong GIL utility tunnel engineering[J]. Journal of Engineering Geology,2017,25(5):1364 − 1373. (in Chinese with English abstract)
|
[10] | NILSEN B,DAHL F,HOLZHAUSER J,et al. SAT:NTNU’s new soil abrasion test[J]. Tunnels and Tunnelling International,2006,38(5):43 − 45. |
[11] | JAKOBSEN P D,BRULAND A,DAHL F. Review and assessment of the NTNU/SINTEF Soil Abrasion Test (SAT™) for determination of abrasiveness of soil and soft ground[J]. Tunnelling and Underground Space Technology,2013,37:107 − 114. doi: 10.1016/j.tust.2013.04.003 |
[12] | JAKOBSEN P D,LANGMAACK L,DAHL F,et al. Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear,torque and thrust[J]. Tunnelling and Underground Space Technology,2013,38:398 − 408. doi: 10.1016/j.tust.2013.07.021 |
[13] | ROSTAMI J,GHASEMI A,GHARAHBAGH E A,et al. Study of dominant factors affecting cerchar abrasivity index[J]. Rock Mechanics and Rock Engineering,2014,47(5):1905 − 1919. doi: 10.1007/s00603-013-0487-3 |
[14] | ROSTAMI J,GHARAHBAGH E A,PALOMINO A M,et al. Development of soil abrasivity testing for soft ground tunneling using shield machines[J]. Tunnelling and Underground Space Technology,2012,28:245 − 256. doi: 10.1016/j.tust.2011.11.007 |
[15] | ABU BAKAR M Z,MAJEED Y,ROSTAMI J. Influence of moisture content on the LCPC test results and its implications on tool wear in mechanized tunneling[J]. Tunnelling and Underground Space Technology,2018,81:165 − 175. doi: 10.1016/j.tust.2018.07.021 |
[16] | HAMZABAN M T,JAKOBSEN P D,SHAKERI H,et al. Water content,effective stress,and rotation speed impact on the abrasivity of granular soils in LCPC test results[J]. Tunnelling and Underground Space Technology,2019,87:41 − 55. doi: 10.1016/j.tust.2019.02.003 |
[17] | ABU BAKAR M Z,MAJEED Y,RASHID M A,et al. Wear mechanisms of LCPC rock abrasivity test impellers of materials equivalent to TBM cutter head face tools[J]. Tunnelling and Underground Space Technology,2021,116:104122. doi: 10.1016/j.tust.2021.104122 |
[18] |
李潮. 砂卵石地层土压平衡盾构关键参数计算模型研究[D]. 北京:中国矿业大学(北京),2013. [LI Chao. Study on the calculation models of key parameters of the EPB shield machine in sandy cobble ground [D]. Beijing:China University of Mining and Technology (Beijing),2013. (in Chinese with English abstract)
|
[19] | HAMZABAN M T,TAVANA N H,JAKOBSEN P D,et al. The effect of the plastic behavior of clay particles on LCPC abrasive coefficient[J]. Tunnelling and Underground Space Technology,2019,92:103054. doi: 10.1016/j.tust.2019.103054 |
[20] | BARZEGARI G,UROMEIHY A,ZHAO Jian. A newly developed soil abrasion testing method for tunnelling using shield machines[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2013,46(1):63 − 74. doi: 10.1144/qjegh2012-039 |
[21] | WEI Yingjie,YANG Yuyou,TAO Mingjiang. Effects of gravel content and particle size on abrasivity of sandy gravel mixtures[J]. Engineering Geology,2018,243:26 − 35. doi: 10.1016/j.enggeo.2018.06.009 |
[22] | GHARAHBAGH E A,QIU Tong,ROSTAMI J. Evaluation of granular soil abrasivity for wear on cutting tools in excavation and tunneling equipment[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(10):1718 − 1726. doi: 10.1061/(ASCE)GT.1943-5606.0000897 |
[23] | ALAVI G E,ROSTAMI J,TALEBI K. Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines[J]. Tunnelling and Underground Space Technology,2014,41:127 − 136. |
[24] | GHARAHBAGH E A,ROSTAMI J,PALOMINO A M. New soil abrasion testing method for soft ground tunneling applications[J]. Tunnelling and Underground Space Technology,2011,26(5):604 − 613. doi: 10.1016/j.tust.2011.04.003 |
[25] | BARZEGARI G,UROMEIHY A,ZHAO Jian. Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects[J]. Tunnelling and Underground Space Technology,2015,48:43 − 57. doi: 10.1016/j.tust.2014.10.010 |
[26] | HASHEMNEJAD A,GHAFOORI M,AZALI S T. Utilizing water,mineralogy and sedimentary properties to predict LCPC abrasivity coefficient[J]. Bulletin of Engineering Geology and the Environment,2016,75(2):841 − 851. doi: 10.1007/s10064-015-0779-9 |
[27] | HAMZABAN M T,MOHAMMADI N R S,JAKOBSEN P D. The effect of the particle size distribution curve on the abrasivity of non-cohesive soils in LCPC test[J]. Tunnelling and Underground Space Technology,2020,105:103573. doi: 10.1016/j.tust.2020.103573 |
[28] | KAHRAMAN S,FENER M,KÄSLING H,et al. The influences of textural parameters of grains on the LCPC abrasivity of coarse-grained igneous rocks[J]. Tunnelling and Underground Space Technology,2016,58:216 − 223. doi: 10.1016/j.tust.2016.05.011 |
[29] | SUN Zhengyang,YANG Zhiyong,JIANG Yusheng,et al. Influence of particle size distribution,test time,and moisture content on sandy stratum LCPC abrasivity test results[J]. Bulletin of Engineering Geology and the Environment,2021,80(1):611 − 625. doi: 10.1007/s10064-020-01927-3 |
[30] | YANG Zhiyong,YANG Xing,DING Yanjie,et al. Characteristics of conditioned sand for EPB shield and its influence on cutterhead torque[J]. Acta Geotechnica,2022,17(12):5813 − 5828. doi: 10.1007/s11440-022-01666-7 |
[31] | HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering,1985,111(10):1177 − 1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177) |
LCPC test device and steel sheet.
Variation of particle size distribution with different test times
Wear condition of steel sheet after 5 min-test
Circle steel sheet.
Effective breakage rate and LAC value of soil samples
Shield cutter layout of sectionYou-Niu
Excavated pebbles-⑤ on site
Cutter wear with different cutter head radius of sectionYou-Niu
Shield cutter layout of section 3—Cao
Cutter wear with different cutterhead radiusofsection3—Cao