2023 Vol. 50, No. 6
Article Contents

WANG Xiaoyan, YIN Dechao, WANG Yushan, WU Bin, AN Yonghui, XU Rongzhen, WANG Xi, LIU Yun. Research on in-situ test of lake evaporation in the Baiyangdian Lake[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 204-212. doi: 10.16030/j.cnki.issn.1000-3665.202211030
Citation: WANG Xiaoyan, YIN Dechao, WANG Yushan, WU Bin, AN Yonghui, XU Rongzhen, WANG Xi, LIU Yun. Research on in-situ test of lake evaporation in the Baiyangdian Lake[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 204-212. doi: 10.16030/j.cnki.issn.1000-3665.202211030

Research on in-situ test of lake evaporation in the Baiyangdian Lake

  • The Baiyangdian Lake is located in Xiongan New Area, which has a fragile ecological environment and a shortage of water resources. Lake evaporation is one of the main discharge of the Baiyangdian Lake, and research on lake evaporation is of important practical significance and scientific value for understanding lake water circulation and evaluating ecological water demand and for recovery of lake ecological function. However, the actual observed data on evaporation in the Baiyangdian Lake is limited, so it is usually estimated by converting the data of nearby land observation stations or empirical models, which cannot accurately estimate the lake evaporation because of large calculation error. In this work, in-situ experiments were carried out in the Baiyangdian Lake. This study established an E601 evaporation station and a 20 m2 evaporation pool to observe the lake evaporation at the center of the Baiyangdian Lake, and an automatic weather station was established simultaneously to get meteorological data. The correlation between evaporation by E601 evaporation station and meteorological factors is analyzed by methods of correlation analysis and multiple linear regression model. The evaporation of the E601 evaporation station is compared with the data of the 20 m2 evaporation pool and the simulated evaporation. The results indicate that in the Baiyangdian Lake in summer, the diurnal variation of lake evaporation is intense, ranging from 0.4 mm/d to 6.6 mm/d, and the maximum evaporation occurs in June, but decreases with the increasing rainfall from July to August. Evaporation of lake water is more affected by radiation and humidity. The evaporation of 20 m2 evaporation pool is taken as the evaporation of lake water. The observed evaporation of E601 evaporation station is higher than the actual evaporation of Baiyangdian Lake, which can be used to estimate lake evaporation more accurately by local evaporation conversion coefficient. In this experiment, the evaporation conversion coefficient between the 20 m2 evaporation pool and the E601 evaporation station is about 0.98, which is slightly greater than the previous studies. The results of this study provides a basic basis for the calculation of water surface evaporation in the Baiyangdian area.

  • 加载中
  • [1] 孙夏利,费良军,李学军. 我国水面蒸发研究与进展[J]. 水资源与水工程学报,2009,20(4):17 − 22. [SUN Xiali,FEI Liangjun,LI Xuejun. Research and development of water surface evaporation in China[J]. Journal of Water Resources and Water Engineering,2009,20(4):17 − 22. (in Chinese with English abstract)

    Google Scholar

    SUN Xiali, FEI Liangjun, LI Xuejun. Research and development of water surface evaporation in China[J]. Journal of Water Resources and Water Engineering, 2009, 204): 1722. (in Chinese with English abstract).

    Google Scholar

    [2] 黄金廷,李宗泽,王文科,等. 格尔木河流域水面蒸发特征及影响因素分析[J]. 水文地质工程地质,2021,48(3):31 − 37. [HUANG Jinting,LI Zongze,WANG Wenke,et al. Characteristics of evaporation and its effect factors in the Golmud River catchment[J]. Hydrogeology & Engineering Geology,2021,48(3):31 − 37. (in Chinese with English abstract)

    Google Scholar

    HUANG Jinting, LI Zongze, WANG Wenke, et al. Characteristics of evaporation and its effect factors in the Golmud River catchment[J]. Hydrogeology & Engineering Geology, 2021, 483): 3137. (in Chinese with English abstract).

    Google Scholar

    [3] MA Ning,SZILAGYI J,NIU Guoyue,et al. Evaporation variability of Nam Co Lake in the Xizang Plateau and its role in recent rapid lake expansion[J]. Journal of Hydrology,2016,537:27 − 35. doi: 10.1016/j.jhydrol.2016.03.030

    CrossRef Google Scholar

    [4] SHAO Changliang,CHEN Jiquan,CHU Housen,et al. Intra-annual and interannual dynamics of evaporation over Western Lake Erie[J]. Earth and Space Science,2020,7(11).

    Google Scholar

    [5] 王积强,陆旭,刘巽民. 中国水面蒸发器的发展简史与相关技术问题探讨[J]. 水利技术监督,2011,19(3):9 − 11. [WANG Jiqiang,LU Xu,LIU Xunmin. Development history of surface evaporator in China and discussion on related technical problems[J]. Technical Supervision in Water Resources,2011,19(3):9 − 11. ( in Chinese.

    Google Scholar

    WANG Jiqiang, LU Xu, LIU Xunmin. Development history of surface evaporator in China and discussion on related technical problems[J]. Technical Supervision in Water Resources, 2011, 193): 911. ( in Chinese.

    Google Scholar

    [6] MASONER J R,STANNARD D I,CHRISTENSON S C. Differences in evaporation between a floating pan and class a pan on land[J]. Journal of the American Water Resources Association,2008,44(3):552 − 561. doi: 10.1111/j.1752-1688.2008.00181.x

    CrossRef Google Scholar

    [7] 陆美美,周石硚,何霞. 青藏高原湖泊蒸发估算方法的比较研究—以纳木错为例[J]. 冰川冻土,2017,39(2):281 − 291. [LU Meimei,ZHOU Shiqiao,HE Xia. A comparison of the formulas for estimation of the lake evaporation on the Xizang Plateau:Taking Lake Nam Co as an example[J]. Journal of Glaciology and Geocryology,2017,39(2):281 − 291. (in Chinese with English abstract)

    Google Scholar

    LU Meimei, ZHOU Shiqiao, HE Xia. A comparison of the formulas for estimation of the lake evaporation on the Xizang Plateau: Taking Lake Nam Co as an example[J]. Journal of Glaciology and Geocryology, 2017, 392): 281291. (in Chinese with English abstract).

    Google Scholar

    [8] WANG Wei, XIAO Wei,CAO Chang,et al. Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China[J]. Journal of Hydrology,2014,511:811 − 824. doi: 10.1016/j.jhydrol.2014.02.012

    CrossRef Google Scholar

    [9] 施成熙,牛克源,陈天珠,等. 水面蒸发器折算系数研究[J]. 地理科学,1986,6(4):305 − 313. [SHI Chengxi,NIU Keyuan,CHEN Tianzhu,et al. The study of pan coefficients of evaporation pans of water[J]. Scientia Geogrophica Sinica,1986,6(4):305 − 313. (in Chinese with English abstract)

    Google Scholar

    SHI Chengxi, NIU Keyuan, CHEN Tianzhu, et al. The study of pan coefficients of evaporation pans of water[J]. Scientia Geogrophica Sinica, 1986, 64): 305313. (in Chinese with English abstract).

    Google Scholar

    [10] 韩鹏飞,王旭升,胡晓农,等. 巴丹吉林沙漠湖泊水面蒸发与气象要素的动态关系[J]. 干旱区研究,2018,35(5):1012 − 1020. [HAN Pengfei,WANG Xusheng,HU Xiaonong,et al. Dynamic relationship between evaporation and meteorological factors in lakes in the BadainJaran Desert[J]. Arid Zone Research,2018,35(5):1012 − 1020. (in Chinese with English abstract)

    Google Scholar

    HAN Pengfei, WANG Xusheng, HU Xiaonong, et al. Dynamic relationship between evaporation and meteorological factors in lakes in the BadainJaran Desert[J]. Arid Zone Research, 2018, 355): 10121020. (in Chinese with English abstract).

    Google Scholar

    [11] 许文豪,王晓勇,张俊,等. 鄂尔多斯高原湖泊蒸发原位试验研究[J]. 水文地质工程地质,2019,46(5):16 − 23. [XU Wenhao,WANG Xiaoyong,ZHANG Jun,et al. Research on in-situ test of lake evaporation in the Ordos Plateau[J]. Hydrogeology & Engineering Geology,2019,46(5):16 − 23. (in Chinese with English abstract)

    Google Scholar

    XU Wenhao, WANG Xiaoyong, ZHANG Jun, et al. Research on in-situ test of lake evaporation in the Ordos Plateau[J]. Hydrogeology & Engineering Geology, 2019, 465): 1623. (in Chinese with English abstract).

    Google Scholar

    [12] 王雨山,尹德超,祁晓凡,等. 白洋淀不同水体氢氧同位素特征及其指示意义[J]. 环境科学,2022,43(4):1920 − 1929. [WANG Yushan,YIN Dechao,QI Xiaofan,et al. Hydrogen and oxygen isotopic characteristics of different water and iIndicative significance in Baiyangdian Lake[J]. Environmental Science,2022,43(4):1920 − 1929. (in Chinese with English abstract) doi: 10.13227/j.hjkx.202108202

    CrossRef Google Scholar

    WANG Yushan, YIN Dechao, QI Xiaofan, et al. Hydrogen and oxygen isotopic characteristics of different water and iIndicative significance in Baiyangdian Lake[J]. Environmental Science, 2022, 434): 19201929. (in Chinese with English abstract). doi: 10.13227/j.hjkx.202108202

    CrossRef Google Scholar

    [13] 王晓燕. 白洋淀:生态修复中的“华北明珠”[N]. 中国自然资源报,2021,6,14(7). [Wang Xiaoyan. Baiyangdian Lake:“Pearl of North China” in ecological restoration[N]. China Natural Resources News,2021,6,14(7). (in Chinese)

    Google Scholar

    Wang Xiaoyan. Baiyangdian Lake: “Pearl of North China” in ecological restoration[N]. China Natural Resources News, 2021, 6, 14(7). (in Chinese).

    Google Scholar

    [14] 尹德超,王旭清,王雨山,等. 近60年来白洋淀流域河川径流演变及湿地生态响应[J]. 湖泊科学,2022,34(6):2122 − 2133. [YIN Dechao,WANG Xuqing,WANG Yushan,et al. Runoff evolution and wetland ecological response in Lake Baiyangdian Basin in recent 60 years[J]. Journal of Lake Sciences,2022,34(6):2122 − 2133. (in Chinese with English abstract) doi: 10.18307/2022.0624

    CrossRef Google Scholar

    YIN Dechao, WANG Xuqing, WANG Yushan, et al. Runoff evolution and wetland ecological response in Lake Baiyangdian Basin in recent 60 years[J]. Journal of Lake Sciences, 2022, 346): 21222133. (in Chinese with English abstract). doi: 10.18307/2022.0624

    CrossRef Google Scholar

    [15] HU Litang,XU Zongxue ,HUANG Weidong . Development of a river-groundwater interaction model and its application to a catchment in Northwestern China[J]. Journal of Hydrology,2016,543:483 − 500. doi: 10.1016/j.jhydrol.2016.10.028

    CrossRef Google Scholar

    [16] WU Bin,ZHENG Yi,WU Xin,et al. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling:A surrogate-based approach[J]. Water Resources Research,2015,51(4):2153 − 2173. doi: 10.1002/2014WR016653

    CrossRef Google Scholar

    [17] 祁晓凡,李文鹏,崔虎群,等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质,2022,49(3):29 − 43. [QI Xiaofan,LI Wenpeng,CUI Huqun,et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology,2022,49(3):29 − 43. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202202003

    CrossRef Google Scholar

    QI Xiaofan, LI Wenpeng, CUI Huqun, et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 493): 2943. (in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.202202003

    CrossRef Google Scholar

    [18] 李慧菁,贾尔恒·阿哈提,程艳,等. 准噶尔荒漠生态观测站水面蒸发影响因素研究[J]. 新疆环境保护,2016,,38(4):1 − 5. [LI Huijing,ARHATI · Jaerheng,CHENG Yan,et al. Research on factors affecting water surface evaporation in Junggar ecological and environmental observation station[J]. Environmental Protection of Xinjiang,2016,38(4):1 − 5. (in Chinese with English abstract)

    Google Scholar

    LI Huijing, ARHATI · Jaerheng, CHENG Yan, et al. Research on factors affecting water surface evaporation in Junggar ecological and environmental observation station[J]. Environmental Protection of Xinjiang, 2016, 384): 15. (in Chinese with English abstract).

    Google Scholar

    [19] 赵长龙,刘毅,王金涛,等. 不同材料蒸发皿及环境因素对水面蒸发测定的影响[J]. 灌溉排水学报,2019,39(9):108 – 115. [ZHAO Changlong,LIU Yi,WANG Jintao,et al. Pan materials and the working environment affect water evaporation measurements[J]. Journal of Irrigation and Drainage,2020,39(9):108 – 115. (in Chinese with English abstract ).

    Google Scholar

    ZHAO Changlong, LIU Yi, WANG Jintao, et al. Pan materials and the working environment affect water evaporation measurements[J]. Journal of Irrigation and Drainage, 2020, 39(9): 108 – 115. (in Chinese with English abstract ).

    Google Scholar

    [20] 赵晓松,李梅,王仕刚,等. 鄱阳湖夏季水面蒸发与蒸发皿蒸发的比较[J]. 湖泊科学,2015,27(2):343 − 351. [ZHAO Xiaosong,LI Mei,WANG Shigang,et al. Comparison of actual water evaporation and pan evaporation in summer over the Lake Poyang,China[J]. Journal of Lake Sciences,2015,27(2):343 − 351. (in Chinese with English abstract) doi: 10.18307/2015.0220

    CrossRef Google Scholar

    ZHAO Xiaosong, LI Mei, WANG Shigang, et al. Comparison of actual water evaporation and pan evaporation in summer over the Lake Poyang, China[J]. Journal of Lake Sciences, 2015, 272): 343351. (in Chinese with English abstract). doi: 10.18307/2015.0220

    CrossRef Google Scholar

    [21] 张有芷. 我国水面蒸发试验研究概况[J]. 人民长江,1999,30(3):6 − 8. [ZHANG Youzhi. Survey of experimental study on water surface evaporation in China[J]. Yangtze River,1999,30(3):6 − 8. (in Chinese with English abstract)

    Google Scholar

    ZHANG Youzhi. Survey of experimental study on water surface evaporation in China[J]. Yangtze River, 1999, 303): 68. (in Chinese with English abstract).

    Google Scholar

    [22] 胡顺军,田长彦,宋郁东,等. 塔里木河流域水面蒸发折算系数分析[J]. 中国沙漠,2005,25(5):649 − 651. [HU Shunjun,TIAN Changyan,SONG Yudong,et al. Conversion coefficient of water surface evaporation in Tarim River Basin[J]. Journal of Desert Research,2005,25(5):649 − 651. (in Chinese with English abstract)

    Google Scholar

    HU Shunjun, TIAN Changyan, SONG Yudong, et al. Conversion coefficient of water surface evaporation in Tarim River Basin[J]. Journal of Desert Research, 2005, 255): 649651. (in Chinese with English abstract).

    Google Scholar

    [23] 王永亮,张学知,乔光建. 河北省平原区20 m2水面蒸发池与不同型号蒸发器折算系数分析[J]水文,2012,32(4):58 – 62. [WANG Yongliang,ZHANG Xuezhi,QIAO Guangjian. Conversion coefficient analysis of 20m2 evaporation pond and other evaporators for Hebei Plain[J]. Journal of China Hydrology,2012,32(4):58 – 62. (in Chinese with English abstract)

    Google Scholar

    WANG Yongliang, ZHANG Xuezhi, QIAO Guangjian. Conversion coefficient analysis of 20m2 evaporation pond and other evaporators for Hebei Plain[J]. Journal of China Hydrology, 2012, 32(4): 58 – 62. (in Chinese with English abstract).

    Google Scholar

    [24] 王积强. 关于上游水库水面蒸发量的估算——与吴申燕先生商榷[J]新疆环境保护,1997,19(2):50 – 53. [WANG Jiqiang. On the estimation of water evaporation of upstream reservoir :For discussing with Mr. Wu Shenyan[J]. Environmental Protection of Xinjiang,1997,19(2):50 – 53. (in Chinese )

    Google Scholar

    WANG Jiqiang. On the estimation of water evaporation of upstream reservoir : For discussing with Mr. Wu Shenyan[J]. Environmental Protection of Xinjiang, 1997, 19(2): 50 – 53. (in Chinese )

    Google Scholar

    [25] 王周锋,王文科,李俊亭. 蒸散发水源组成与测定方法研究进展[J]. 水文地质工程地质,2021,48(3):1 − 9. [WANG Zhoufeng,WANG Wenke,LI Junting. A review of the advances in water source composition and observation methods of evapotranspiration[J]. Hydrogeology & Engineering Geology,2021,48(3):1 − 9. (in Chinese with English abstract)

    Google Scholar

    WANG Zhoufeng, WANG Wenke, LI Junting. A review of the advances in water source composition and observation methods of evapotranspiration[J]. Hydrogeology & Engineering Geology, 2021, 483): 19. (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1593) PDF downloads(182) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint