2023 Vol. 50, No. 5
Article Contents

ZENG Qiqiang, WANG Lichao, LIU Wei, ZHANG Qinghua, CHEN Lingwei, LOU Kangming, LIU Yang, FAN Yanan. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159-168. doi: 10.16030/j.cnki.issn.1000-3665.202208053
Citation: ZENG Qiqiang, WANG Lichao, LIU Wei, ZHANG Qinghua, CHEN Lingwei, LOU Kangming, LIU Yang, FAN Yanan. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159-168. doi: 10.16030/j.cnki.issn.1000-3665.202208053

Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area

More Information
  • The rock collapse disaster caused by the dangerous rock mass of slope is a geological disaster with strong sudden occurrence and destructive ability. The key to prevent and control the dangerous rock mass of slope is to delineate the influence range of the dangerous rock mass. In order to accurately assess the influence range of the dangerous rock mass of slope, improve the disaster prevention ability of the dangerous rock mass of slope and reduce the collapse threat, it is urgent to improve the calculation model of the influence range of the dangerous rock mass of slope. Based on the survey results of dangerous rock mass in Guangzhou, the types and slope shape characteristics of common dangerous rock mass in slope are summarized, and the physical and geometric model of the influence range of dangerous rock mass is established. The main factors affecting the collapse movement process, such as slope friction, block collision, bounce, fragmentation, properties of contact surface covering and coefficient of restitution, terrain conditions and earthquake, are comprehensively considered. The calculation model of collapse influence range of linear and curved slope under different slope conditions is established by generalized motion process elements, and the expansion coefficient of collapse influence range under earthquake conditions is obtained according to the influence of earthquake force on the kinetic energy of collapse body. On the basis of previous studies, this model further summarizes the geometric model of slope shape classification and formation, and calculates the calculation model of the maximum influence range of dangerous rock mass under common working conditions and different terrain conditions according to the movement process. After obtaining the slope height, slope and surface characteristics, the influence range of dangerous rock mass can be calculated according to this model. Through the verification and comparison of actual cases, the relative error of calculation results is small, and a certain safety distance can be reserved, which can be used for the evaluation of the influence range of dangerous rock mass in common slope slope, and provide a basis for the prevention and control of dangerous rock mass in slope.

  • 加载中
  • [1] 胡厚田. 崩塌落石研究[J]. 铁道工程学报, 2005, 22(增刊1): 387 − 391

    Google Scholar

    HU Houtian. Research on the collapse and falling stone[J]. Journal of Railway Engineering Society, 2005, 22(Sup 1): 387 − 391. (in Chinese with English abstract)

    Google Scholar

    [2] 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评,2014,60(4):858 − 868. [LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review,2014,60(4):858 − 868. (in Chinese with English abstract) doi: 10.16509/j.georeview.2014.04.017

    CrossRef Google Scholar

    LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4): 858-868. (in Chinese with English abstract) doi: 10.16509/j.georeview.2014.04.017

    CrossRef Google Scholar

    [3] 亚南,王兰生,赵其华,等. 崩塌落石运动学的模拟研究[J]. 地质灾害与环境保护,1996,7(2):25 − 32. [YA Nan,WANG Lansheng,ZHAO Qihua,et al. Simulation study of rockfall kinematics[J]. Journal of Geological Hazards and Enveronment Preservation,1996,7(2):25 − 32. (in Chinese with English abstract)

    Google Scholar

    YA Nan, WANG Lansheng, ZHAO Qihua, et al. Simulation study of rockfall kinematics[J]. Journal of Geological Hazards and Enveronment Preservation, 1996, 7(2): 25-32. (in Chinese with English abstract)

    Google Scholar

    [4] 肖智勇. 高陡边坡崩塌危岩体运动轨迹及冲击能量分析[J]. 路基工程,2021(2):187 − 192. [XIAO Zhiyong. Analysis of movement trajectory and impact energy of dangerous rock mass in high and steep slope collapse[J]. Subgrade Engineering,2021(2):187 − 192. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202011017

    CrossRef Google Scholar

    XIAO Zhiyong. Analysis of movement trajectory and impact energy of dangerous rock mass in high and steep slope collapse[J]. Subgrade Engineering, 2021(2): 187-192. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202011017

    CrossRef Google Scholar

    [5] 廖俊展. 地质灾害治理设计中崩塌落石的运动特征分析[J]. 山西建筑,2021,47(19):72 − 75. [LIAO Junzhan. Analysis on the motion characteristic of rockfall in the designing about geological disaster treatment[J]. Shanxi Architecture,2021,47(19):72 − 75. (in Chinese with English abstract) doi: 10.13719/j.cnki.1009-6825.2021.19.027

    CrossRef Google Scholar

    LIAO Junzhan. Analysis on the motion characteristic of rockfall in the designing about geological disaster treatment[J]. Shanxi Architecture, 2021, 47(19): 72-75. (in Chinese with English abstract) doi: 10.13719/j.cnki.1009-6825.2021.19.027

    CrossRef Google Scholar

    [6] 王伟才. 崩塌落石运动特征评判及量化分析[J]. 西部探矿工程,2021,33(8):15 − 18. [WANG Weicai. Evaluation and quantitative analysis of the characteristics of rockfall movement[J]. West-China Exploration Engineering,2021,33(8):15 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2021.08.005

    CrossRef Google Scholar

    WANG Weicai. Evaluation and quantitative analysis of the characteristics of rockfall movement[J]. West-China Exploration Engineering, 2021, 33(8): 15-18. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2021.08.005

    CrossRef Google Scholar

    [7] 李娟,何亮,荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质,2022,49(2):157 − 163. [LI Juan,HE Liang,XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology,2022,49(2):157 − 163. (in Chinese with English abstract)

    Google Scholar

    LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. (in Chinese with English abstract)

    Google Scholar

    [8] WANG Xing,XIA Yongxu,ZHOU Tianyue. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018,2018:1 − 18.

    Google Scholar

    [9] 王林峰,刘丽,唐芬,等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng,LIU Li,TANG Fen,et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract) doi: 10.13409/j.cnki.jdpme.2018.06.011

    CrossRef Google Scholar

    WANG Linfeng, LIU Li, TANG Fen, et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 973-979. (in Chinese with English abstract) doi: 10.13409/j.cnki.jdpme.2018.06.011

    CrossRef Google Scholar

    [10] 吴建利,胡卸文,梅雪峰,等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli,HU Xiewen,MEI Xuefeng,et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202004029

    CrossRef Google Scholar

    WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 78-87. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202004029

    CrossRef Google Scholar

    [11] ZHU Chun,WANG Dongsheng,XIA Xing,et al. The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts[J]. Natural Hazards and Earth System Sciences,2018,18(6):1811 − 1823. doi: 10.5194/nhess-18-1811-2018

    CrossRef Google Scholar

    [12] ZHANG Yulong,LIU Zaobao,SHI Chong,et al. Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach[J]. Rock Mechanics and Rock Engineering,2018,51(4):1173 − 1191. doi: 10.1007/s00603-017-1385-x

    CrossRef Google Scholar

    [13] CAVIEZEL A,DEMMEL S E,RINGENBACH A,et al. Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes[J]. Earth Surface Dynamics,2019,7(1):199 − 210. doi: 10.5194/esurf-7-199-2019

    CrossRef Google Scholar

    [14] AZZONI A,LA BARBERA G,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1995,32(7):709 − 724.

    Google Scholar

    [15] CROSTA G B,AGLIARDI F. A methodology for physically based rockfall hazard assessment[J]. Natural Hazards and Earth System Sciences,2003,3(5):407 − 422. doi: 10.5194/nhess-3-407-2003

    CrossRef Google Scholar

    [16] HUNGR O,EVANS S G,BOVIS M J,et al. A review of the classification of landslides of the flow type[J]. Environmental and Engineering Geoscience,2001,7(3):221 − 238. doi: 10.2113/gseegeosci.7.3.221

    CrossRef Google Scholar

    [17] BOURRIER F,LAMBERT S,BAROTH J. A reliability-based approach for the design of rockfall protection fences[J]. Rock Mechanics and Rock Engineering,2015,48(1):247 − 259. doi: 10.1007/s00603-013-0540-2

    CrossRef Google Scholar

    [18] DORREN L, BERGER F. New approaches for 3D rockfall modelling with or without the effect of forest in Rockyfor3D[C]//EGU General Assembly Conference Abstracts. 2010.

    Google Scholar

    [19] 彭卫平,刘伟. 广州城市地质研究与城市可持续发展[J]. 城市勘测,2005(6):51 − 53. [PENG Weiping,LIU Wei. Guangzhou urban geological research and urban sustainable development[J]. Urban Geotechnical Investigation & Surveying,2005(6):51 − 53. (in Chinese with English abstract)

    Google Scholar

    PENG Weiping, LIU Wei. Guangzhou urban geological research and urban sustainable development[J]. Urban Geotechnical Investigation & Surveying, 2005(6): 51-53. (in Chinese with English abstract)

    Google Scholar

    [20] 曾志林. 广东省广州市黄埔区保利林语山庄会所后山崩塌地质灾害勘查报告[R]. 广州: 广东省有色矿山地质灾害防治中心, 2019

    Google Scholar

    Zeng Zhilin. Geological disaster investigation report of the collapse of the back mountain of the Baoli Linyu Villa Club in Huangpu District, Guangzhou City, Guangdong Province[R]. Guangzhou: Guangdong non-ferrous mine geological disaster prevention center, 2019. (in Chinese)

    Google Scholar

    [21] 吕庆,孙红月,翟三扣,等. 边坡滚石运动的计算模型[J]. 自然灾害学报,2003,12(2):79 − 84. [吕庆LÜ Qing,SUN Hongyue,ZHAI Sankou,et al. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters,2003,12(2):79 − 84. (in Chinese with English abstract) doi: 10.13577/j.jnd.2003.0214

    CrossRef Google Scholar

    吕庆LÜ Qing, SUN Hongyue, ZHAI Sankou, et al. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters, 2003, 12(2): 79-84. (in Chinese with English abstract) doi: 10.13577/j.jnd.2003.0214

    CrossRef Google Scholar

    [22] 韩振华,陈鑫,王学良,等. 四川罗家青杠岭崩塌风险的定量评价研究[J]. 工程地质学报,2017,25(2):520 − 530. [HAN Zhenhua,CHEN Xin,WANG Xueliang,et al. Risk assessment for luojiaqinggangling rockfall[J]. Journal of Engineering Geology,2017,25(2):520 − 530. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.02.032

    CrossRef Google Scholar

    HAN Zhenhua, CHEN Xin, WANG Xueliang, et al. Risk assessment for luojiaqinggangling rockfall[J]. Journal of Engineering Geology, 2017, 25(2): 520-530. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.02.032

    CrossRef Google Scholar

    [23] 中国地质灾害防治工程行业协会. 崩塌防治工程勘查规范: TCAGHP011-2018[S]. 武汉: 中国地质大学出版社, 2018.

    Google Scholar

    China Geological Disaster Prevention Engineering Industry Association. Exploration specification for collapse prevention project: TCAGHP011-2018[S]. Wuhan: China University of Geosciences Press, 2018. (in Chinese)

    Google Scholar

    [24] 程强,苏生瑞. 汶川地震崩塌滚石坡面运动特征[J]. 岩土力学,2014,35(3):772 − 776. [CHENG Qiang,SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics,2014,35(3):772 − 776. (in Chinese with English abstract) doi: 10.16285/j.rsm.2014.03.011

    CrossRef Google Scholar

    CHENG Qiang, SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics, 2014, 35(3): 772-776. (in Chinese with English abstract) doi: 10.16285/j.rsm.2014.03.011

    CrossRef Google Scholar

    [25] 于帅印. 河南省山地丘陵区地质灾害风险评价[D]. 西安: 长安大学, 2018

    Google Scholar

    YU Shuaiyin. Risk assessment of geological disasters in mountainous and hilly areas of Henan Province[D]. Xi’an: Changan University, 2018. (in Chinese with English abstract)

    Google Scholar

    [26] 陆明. 危岩崩塌运动数值模拟及治理措施研究[D]. 南宁: 广西大学, 2017

    Google Scholar

    LU Ming. Study on numerical simulation of dangerous rock collapse movement and control measures[D]. Nanning: Guangxi University, 2017. (in Chinese with English abstract)

    Google Scholar

    [27] 王颂,张路青,周剑,等. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报,2020,28(4):784 − 792. [WANG Song,ZHANG Luqing,ZHOU Jian,et al. Characteristic analysis and kinematic simulation of rockfall along shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology,2020,28(4):784 − 792. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-519

    CrossRef Google Scholar

    WANG Song, ZHANG Luqing, ZHOU Jian, et al. Characteristic analysis and kinematic simulation of rockfall along shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology, 2020, 28(4): 784-792. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-519

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(1586) PDF downloads(133) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint