2023 Vol. 50, No. 3
Article Contents

WANG Jiling, ZHOU Weibo, SUN Lili, WANG Yimeng. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 34-43. doi: 10.16030/j.cnki.issn.1000-3665.202206021
Citation: WANG Jiling, ZHOU Weibo, SUN Lili, WANG Yimeng. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 34-43. doi: 10.16030/j.cnki.issn.1000-3665.202206021

Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River

More Information
  • The study on the spatial variability of hydraulic conductivity is the basis for artificial recharge of groundwater reservoir. In order to study the spatial variability of the hydraulic conductivity of underground reservoirs in Fuping section of Shichuan River, Box-Cox transform and Johnson transform were introduced to preprocess the field double-loop percolation test and exploration hole data. Traditional statistical methods and geostatistical methods were applied to analyze the hydraulic conductivity of the reservoir area with the variation function as a tool. The results show that the hydraulic conductivity of the reservoir area varies from 0.02 m/d to 6.44 m/d and obeys both logarithmic normal distribution and Box-Cox transformation normal distribution, the spatial correlation of the hydraulic conductivity is medium, and the best fitting model is Gaussian model. The Kriging interpolation results based on the optimal model show that the hydraulic conductivity as a whole is larger in the northwest and smaller in the southeast. The hydraulic conductivity is the largest near Meijiaping Township and Nanshe Township, ranging from 2.84 m/d to 6.44 m/d, with small spatial variation scale. It varies significantly near Mizi Township and Zhuangli Township, with large spatial variation scale. It is the smallest in the south of Dongshangguan Township, all less than 0.2 m/d, with small variation scale. The spatial variation is influenced by the combination of topography, geomorphology, distribution of stratigraphic lithology, hydro-meteorological conditions, distribution of test sites and exploration sites, human activities and other factors. The location of recharge should be chosen in Meijiaping town and other locations with large hydraulic conductivity, small spatial variation scale and low influence by human disturbance. The research results can provide theoretical references for the construction of underground reservoirs.

  • 加载中
  • [1] 姜秋香,付强,王子龙. 空间变异理论在土壤特性分析中的应用研究进展[J]. 水土保持研究,2008,15(1):250 − 253. [JIANG Qiuxiang,FU Qiang,WANG Zilong. Research progress of the spatial variability theory in application to soil characteristic analysis[J]. Research of Soil and Water Conservation,2008,15(1):250 − 253. (in Chinese with English abstract)

    Google Scholar

    [2] HATCH E C,FISHER T A,RUEHL R C,et al. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods[J]. Journal of Hydrology,2010,389(3/4):276 − 288.

    Google Scholar

    [3] ZHANG Nan,LI Lin,JIANG Hong,et al. Study on variation rule of permeability coefficient in unsaturated zone along the WeiHe River in the intertidal area[J]. IOP Conference Series Earth and Environmental Science,2018,208(1):71 − 78.

    Google Scholar

    [4] 李金荣,韩新正,万红友,等. 渗透系数的空间变异研究[J]. 中国农村水利水电,2011(2):11 − 13. [LI Jinrong,HAN Xinzheng,WAN Hongyou,et al. Research on the spatial variability of hydraulic conductivity[J]. China Rural Water and Hydropower,2011(2):11 − 13. (in Chinese with English abstract)

    Google Scholar

    [5] 王开丽,黄冠华. 二维强非均质含水层中渗透系数空间变异对污染物迁移的影响[J]. 水利学报,2010,41(4):437 − 445. [WANG Kaili,HUANG Guanhua. Effect of hydraulic conductivity on contaminant transport in highly heterogeneous two-dimensional aquifers[J]. Journal of Hydraulic Engineering,2010,41(4):437 − 445. (in Chinese with English abstract)

    Google Scholar

    [6] CHEN Xunhong,SONG Jinxi,WANG Wenke. Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer[J]. Journal of Hydrology,2010,388(3/4):379 − 388.

    Google Scholar

    [7] CHENG Cheng,SONG Jinxi,CHEN Xunhong,et al. Statistical distribution of streambed vertical hydraulic conductivity along the Platte River,Nebraska[J]. Water Resources Management,2011,25(1):265 − 285. doi: 10.1007/s11269-010-9698-5

    CrossRef Google Scholar

    [8] 施小清,吴吉春,袁永生. 渗透系数空间变异性研究[J]. 水科学进展,2005,16(2):210 − 215. [SHI Xiaoqing,WU Jichun,YUAN Yongsheng. Study on the spatial variability of hydraulic conductivity[J]. Advances in Water Science,2005,16(2):210 − 215. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-6791.2005.02.010

    CrossRef Google Scholar

    [9] 陈宝辉,王文科,段磊,等. 巴音河下游河床渗透系数空间变异性研究[J]. 水利水电技术,2019,50(1):52 − 57. [CHEN Baohui,WANG Wenke,DUAN Lei,et al. Spatial variability of hydraulic conductivity of riverbed sediment in the lower reaches of Bayin River[J]. Water Resources and Hydropower Engineering,2019,50(1):52 − 57. (in Chinese with English abstract) doi: 10.13928/j.cnki.wrahe.2019.01.007

    CrossRef Google Scholar

    [10] 沈鹏云. 渭河河床沉积物渗透系数空间变异性研究[D]. 西安: 西北大学, 2012

    Google Scholar

    SHEN Pengyun. Study on the spatial variability of hydraulic conductivity of riverbed sediment in the Weihe River[D]. Xi’an: Northwest University, 2012. (in Chinese with English abstract)

    Google Scholar

    [11] 米海存,Chen X H,何红曼,等. 渭河河漫滩沉积物渗透性研究[J]. 水文地质工程地质,2014,41(4):19 − 23. [MI Haicun,CHEN X H,HE Hongman,et al. Determination of hydraulic conductivity of the floodplain in the Weihe River[J]. Hydrogeology & Engineering Geology,2014,41(4):19 − 23. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.04.007

    CrossRef Google Scholar

    [12] 葛佳亮,严婷,吕敬,等. 渭河临潼段漫滩沉积物渗透系数分析[J]. 水资源与水工程学报,2018,29(2):201 − 204. [GE Jialiang,YAN Ting,LV Jing,et al. Analysis of floodplain sediments saturated hydraulic conductivity in Lintong section of Weihe River[J]. Journal of Water Resources & Water Engineering,2018,29(2):201 − 204. (in Chinese with English abstract) doi: 10.11705/j.issn.1672-643X.2018.02.33

    CrossRef Google Scholar

    [13] 吕敬,柯贤敏,张小筱,等. 泾阳南塬黄土边坡饱和渗透系数变异性分析[J]. 水土保持通报,2017,37(3):254 − 257. [LV Jing,KE Xianmin,ZHANG Xiaoxian,et al. Variability of saturated permeability coefficient of loess slopes in South Jingyang Tableland[J]. Bulletin of Soil and Water Conservation,2017,37(3):254 − 257. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2017.03.043

    CrossRef Google Scholar

    [14] 刘波,林晓宁,马红亮,等. 黄河三角洲沉积物及其渗透系数空间分布特征[J]. 人民黄河,2018,40(5):1 − 6. [LIU Bo,LIN Xiaoning,MA Hongliang,et al. Spatial distribution of particle size and hydraulic conductivity of shallow surface sediments in the Yellow River Delta[J]. Yellow River,2018,40(5):1 − 6. (in Chinese with English abstract)

    Google Scholar

    [15] 宋扬. 灞河橡胶坝库区沉积物渗透系数空间变异及河水—地下水交互作用研究[D]. 西安: 长安大学, 2017

    Google Scholar

    SONG Yang. Spatial variability of sediment permeability coefficient and river-groundwater interaction in Bahe rubber dam area[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract)

    Google Scholar

    [16] 王超,束龙仓,鲁程鹏. 渗透系数空间变异性对低渗透地层中地下水溶质运移的影响[J]. 河海大学学报(自然科学版),2014,42(2):137 − 142. [WANG Chao,SHU Longcang,LU Chengpeng. Impacts of spatial variability of hydraulic conductivity on solute transport in groundwater of low-permeability stratum[J]. Journal of Hohai University (Natural Sciences),2014,42(2):137 − 142. (in Chinese with English abstract) doi: 10.3876/j.issn.1000-1980.2014.02.008

    CrossRef Google Scholar

    [17] 何满潮,刘斌,姚磊华,等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版),2002(4):374 − 377. [HE Manchao,LIU Bin,YAO Leihua. Study on hydraulic conductivity during geothermal reinjection[J]. Journal of Jilin University (Earth Science Edition),2002(4):374 − 377. (in Chinese with English abstract)

    Google Scholar

    [18] CUI Ruifei,ZHU Yaguang,ZHANG Huan,et al. BoxCox multi-output linear regression for 10.7 cm solar radio flux prediction[J]. Research in Astronomy and Astrophysics,2021,21(4):149 − 158.

    Google Scholar

    [19] 常浩浩,宋松柏,吴海江,等. 基于Johnson分布的年降水量频率分析[J]. 水力发电学报,2021,40(3):76 − 83. [CHANG Haohao,SONG Songbai,WU Haijiang,et al. Frequency analysis of annual precipitation based on Johnson distribution[J]. Journal of Hydroelectric Engineering,2021,40(3):76 − 83. (in Chinese with English abstract) doi: 10.11660/slfdxb.20210307

    CrossRef Google Scholar

    [20] 蔡国涛,乔长录. 基于正态变换的玛纳斯河水文频率研究[J]. 人民黄河,2022,44(3):21 − 25. [CAI Guotao,QIAO Changlu. Study on hydrological frequency with Manas River based on normal transform[J]. Yellow River,2022,44(3):21 − 25. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2022.03.005

    CrossRef Google Scholar

    [21] 薛佩佩,文章,梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报,2022,41(1):209 − 222. [XUE Peipei,WEN Zhang,LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology,2022,41(1):209 − 222. (in Chinese with English abstract)

    Google Scholar

    [22] 荆永滨,王公忠,毕林. 矿山离散钻孔样品变异函数模型计算与拟合[J]. 矿冶工程,2017,37(4):19 − 22. [JING Yongbin,WANG Gongzhong,BI Lin. Calculating and fitting variogram models for dispersed mine drill samples[J]. Mining and Metallurgical Engineering,2017,37(4):19 − 22. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-6099.2017.04.005

    CrossRef Google Scholar

    [23] 王友年,李升,余斌. 阿克苏河流域渗透系数空间变异性分析[J]. 中国农村水利水电,2021(1):64 − 70. [WANG Younian,LI Sheng,YU Bin. Spatial variability analysis of permeability coefficient in Aksu River Basin[J]. China Rural Water and Hydropower,2021(1):64 − 70. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2284.2021.01.013

    CrossRef Google Scholar

    [24] NALDER A I,WEIN W R. Spatial interpolation of climatic Normals:Test of a new method in the Canadian boreal forest[J]. Agricultural and Forest Meteorology,1998,92(4):211 − 225. doi: 10.1016/S0168-1923(98)00102-6

    CrossRef Google Scholar

    [25] 李海涛,邵泽东. 空间插值分析算法综述[J]. 计算机系统应用,2019,28(7):1 − 8. [LI Haitao,SHAO Zedong. Review of spatial interpolation analysis algorithm[J]. Computer Systems & Applications,2019,28(7):1 − 8. (in Chinese with English abstract) doi: 10.15888/j.cnki.csa.006988

    CrossRef Google Scholar

    [26] 杨洁荣,宋向东,明喆. Johnson转换与Box-Cox转换相比的优越性[J]. 佳木斯大学学报(自然科学版),2010,28(3):449 − 452. [YANG Jierong,SONG Xiangdong,MING Zhe. The superiority of Johnson transformation to Box-Cox transformation[J]. Journal of Jiamusi University (Natural Science Edition),2010,28(3):449 − 452. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-1402.2010.03.038

    CrossRef Google Scholar

    [27] 郭志奇. 陕西省富平县石川河河道渗透性能分析[J]. 地下水,2021,43(6):82 − 85. [GUO Zhiqi. Analysis of the infiltration performance of the Shichuan River in Fuping County,Shaanxi Province[J]. Ground Water,2021,43(6):82 − 85. (in Chinese)

    Google Scholar

    [28] 刘卫岗. 陕西省石川河流域地下水调蓄研究报告[R]. 西安: 陕西省工程勘察研究院, 2015

    Google Scholar

    LIU Weigang. Study on groundwater storage in Shichuan River Basin of Shaanxi Province[R]. Xi’an: Shaanxi Engineering Investigation and Research Institute, 2015. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(1541) PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint