Citation: | PANG Jumei, WANG Yingnan, JIN Aifang, SHAO Hai, YIN Zhiqiang, WAN Liqin, YIN Xiulan, YU Jun. Hydrochemical and isotopic characteristics and genesis of geothermal fluids in the Maojingba geothermal field, northern Chengde city[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 224-236. doi: 10.16030/j.cnki.issn.1000-3665.202205008 |
The temperature of geothermal water exposed on the surface in the Maojingba area, northern Chengde city, can reach up to 98.7 °C, mostly occurring in the Jurassic coarse-grained diorite with well-developed fractures and high ${\mathrm{SO}}_4^{2-} $ content. However, few studies on the recharge, evolution, and genetic mechanism of the geothermal fluids in this area. In order to understand the genesis of the geothermal system in the bedrock mountain area and evaluate its development and utilization potential, this study, based on the regional geothermal geological survey, tested and analyzed the hydrochemical composition of different water bodies, groundwater dating isotopes (3H and 14C), sulfur and oxygen isotopes in sulfate (δ34S-${\mathrm{SO}}_4^{2-} $ and δ18O-${\mathrm{SO}}_4^{2-} $), carbon isotopes (δ13C-${\mathrm{HCO}}_3^- $) and strontium isotope (87Sr and 86Sr) to explore the fluid genesis of the Maojingba geothermal system. The results show that: (1) the chemical type of geothermal water in Maojingba area is mainly $ {\mathrm{SO}}_4-$Na type. The dissolution of silicate mineral and cation exchange promote the enrichment of Na+, K+and SiO2 in the geothermal water. The source of ${\mathrm{SO}}_4^{2-} $ in water is speculated to be H2S oxidation from deep reduction environment or the reaction between high-temperature geothermal water and sulfur, rather than the dissolution of sulfate minerals. (2) The average ratio of n( 87Sr)/n(86Sr) in the geothermal water is 0.7092, close to the ratio of marine carbonate rock, indicating that marine carbonate rock may occur in the deep geothermal reservoir. (3) The geothermal water in the study area is old groundwater with poor circulation and renewal ability, based the groundwater age of 11.9−14.9 ka from 14C. The recharge of the geothermal water is from precipitation in the surrounding mountains, with elevation of1532−1632 m. (4) The deep geothermal reservoir temperature of the geothermal system is 142−144 °C, and the highest temperature is located in the northern part of the geothermal field. The research results are of great significance for the sustainable development and utilization of geothermal resources in the mountainous areas of northern Hebei Province.
[1] |
庞忠和,黄少鹏,胡圣标,等. 中国地热研究的进展与展望(1995~2014)[J]. 地质科学,2014,49(3):719 − 727. [PANG Zhonghe,HUANG Shaopeng,HU Shengbiao,et al. Geothermal studies in China:Progress and prospects 1995-2014[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2014,49(3):719 − 727. (in Chinese with English abstract)
|
[2] |
王贵玲,蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923 − 1937. [WANG Guiling,LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923 − 1937. (in Chinese with English abstract)
|
[3] |
王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1 − 9. [WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1 − 9. (in Chinese with English abstract)
|
[4] |
汪集暘. 地热学及其应用[M]. 北京:科学出版社,2015:261 − 275. [WANG Jiyang,et al. Geothermics and its applications[M]. Beijing:Science Press,2015:261 − 275. (in Chinese with English abstract)
|
[5] | PANG Zhonghe,KONG Yanlong,LI Jie,et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science,2017,17:534 − 537. doi: 10.1016/j.proeps.2016.12.135 |
[6] | PANG Zhonghe,REED M. Theoretical chemical thermometry on geothermal waters:problems and methods[J]. Geochimica et Cosmochimica Acta,1998,62(6):1083 − 1091. doi: 10.1016/S0016-7037(98)00037-4 |
[7] | KONG Yanlong,PANG Zhonghe,SHAO Haibing,et al. Recent studies on hydrothermal systems in China:A review[J]. Geothermal Energy,2014,2(1):1 − 12. doi: 10.5194/gtes-2-1-2014 |
[8] | PANG Jumei,PANG Zhonghe,LV Min,et al. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field,North China[J]. Environmental Earth Sciences,2018,77(1):1 − 21. doi: 10.1007/s12665-017-7169-5 |
[9] |
陈墨香. 华北地热[M]. 北京:科学出版社,1988:40 − 48. [CHEN Moxiang. North China geothermal[M]. Beijing:Science Press,1988:40 − 48. (in Chinese)
|
[10] |
邵海,王英男,殷志强,等. 承德坝上高原如意河流域地表基质调查与编图探索[J]. 水文地质工程地质,2023,50(2):150 − 159. [SHAO Hai,WANG Yingnan,YIN Zhiqiang,et al. An exploration on investigation and mapping of ground substrate in Ruyi River Basin,Bashang Plateau,Chengde City[J]. Hydrogeology & Engineering Geology,2023,50(2):150 − 159. (in Chinese with English abstract)
|
[11] |
刘峰,王贵玲,张薇,等. 燕山中部大地热流及岩石圈热结构特征——以承德市七家-茅荆坝地热田为例[J]. 地质学报,2020,94(7):1950 − 1959. [LIU Feng,WANG Guiling,ZHANG Wei,et al. Terrestrial heat flow and lithospheric thermal structure in the middle Yanshan region:A case study from the Qijia-Maojingba geothermal field in Chengde[J]. Acta Geologica Sinica,2020,94(7):1950 − 1959. (in Chinese with English abstract)
|
[12] |
孙厚云,孙晓明,卫晓锋,等. 河北承德偏硅酸矿泉水成因模式:岩石风化与水岩作用证据[J]. 中国地质,2022,49(4):1088 − 1113. [SUN Houyun,SUN Xiaoming,WEI Xiaofeng,et al. Formation mechanism of metasilicate mineral water in Chengde,Hebei Province:Evidence from rock weathering and water-rock interaction[J]. Geology in China,2022,49(4):1088 − 1113. (in Chinese with English abstract)
|
[13] |
朱雪芹,刘文波,李志明,等. 承德地区天然含锶矿泉水空间分布及特征分析[J]. 水文地质工程地质,2020,47(6):65 − 73. [ZHU Xueqin,LIU Wenbo,LI Zhiming,et al. Distribution and characterization analyses of strontium-bearing mineral spring water in the Chengde region[J]. Hydrogeology & Engineering Geology,2020,47(6):65 − 73. (in Chinese with English abstract)
|
[14] |
张德忠,刘志刚,卢红柳,等. 河北地热[M]. 北京:地质出版社,2013:56 − 75. [ZHANG Dezhong,LIU Zhigang,LU Hongliu,et al. Hebei geothermal[M]. Beijing:Geological Publishing House,2013:56 − 75. (in Chinese)
|
[15] |
杨建坤,张桂凤. 河北隆化七家温泉构造形迹特征及作用[J]. 河北地质大学学报,2019,42(4):35 − 39. [YANG Jiankun,ZHANG Guifeng. Stuctural shape characteristics and functions of the Qijia hot spring of Longhua,Hebei[J]. Journal of Hebei GEO University,2019,42(4):35 − 39. (in Chinese with English abstract)
|
[16] |
王卫星,李攻科,李宏,等. 河北汤泉地热流体水文地球化学特征及其成因[J]. 中国地质,2013,40(6):1935 − 1941. [WANG Weixing,LI Gongke,LI Hong,et al. Hydrogeochemical characteristics and origin of the geothermal fluid in Tangquan area,Hebei Province[J]. Geology in China,2013,40(6):1935 − 1941. (in Chinese with English abstract)
|
[17] |
郭瑞林,郭帅,张立剑. 河北省隆化县七家温泉特征及成因分析[J]. 东华理工大学学报(自然科学版),2015,38(2):218 − 226. [GUO Ruilin,GUO Shuai,ZHANG Lijian. Characteristics and forming analysis of the qijia hot spring in Longhua County of Hebei Province[J]. Journal of East China Institute of Technology (Natural Science),2015,38(2):218 − 226. (in Chinese with English abstract)
|
[18] |
张雪,周训,李再光,等. 河北丰宁县洪汤寺温泉的水化学与同位素特征[J]. 水文地质工程地质,2010,37(5):123 − 127. [ZHANG Xue,ZHOU Xun,LI Zaiguang,et al. Hydrochemical and isotopic characteristics of the Hongtangsi hot spring in Fengning County of Hebei Province[J]. Hydrogeology & Engineering Geology,2010,37(5):123 − 127. (in Chinese with English abstract)
|
[19] |
原若溪,王贵玲,刘峰,等. 冀东北地区中低温对流型地热系统的氟指示意义研究[J]. 地质论评,2021,67(1):218 − 230. [YUAN Ruoxi,WANG Guiling,LIU Feng,et al. Study on the indication of fluorine of the low—medium temperature convective geothermal system in Northeastern Hebei Province[J]. Geological Review,2021,67(1):218 − 230. (in Chinese with English abstract)
|
[20] |
储雪蕾. 北京地区地表水的硫同位素组成与环境地球化学[J]. 第四纪研究,2000,20(1):87 − 97. [CHU Xuelei. Sulfur isotopic compositions and environmental geochemistry of surface water in Beijing district[J]. Quaternary Sciences,2000,20(1):87 − 97. (in Chinese with English abstract)
|
[21] |
蔡春芳,李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展,2005,20(10):1100 − 1105. [CAI Chunfang,LI Hongtao. Thermochemical sulfate reduction in sedimentary basins:A review[J]. Advances in Earth Science,2005,20(10):1100 − 1105. (in Chinese with English abstract)
|
[22] |
李云,姜月华. 地下水中硫酸盐的硫、氧同位素应用[J]. 水文地质工程地质,2008,35(增刊):222 − 227. [LI Yun,JIANG Yuehua. Application of sulfur and oxygen isotopes in groundwater sulfate[J]. Hydrogeology & Engineering Geology supplementary issue,2008,35(Sup):222 − 227. (in Chinese with English abstract)
|
[23] |
国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Standard for groundwater quality:GB/T 14848—2017[S]. Beijing:Standards Press of China,2017. (in Chinese)
|
[24] | LI Jie,PANG Zhonghe,KONG Yanlong,et al. Groundwater isotopes biased toward heavy rainfall events and implications on the local meteoric water line[J]. Journal of Geophysical Research:Atmospheres,2018,123(11):6259 − 6266. |
[25] | LIU Jianrong,SONG Xianfang,YUAN Guofu,et al. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin,2010,55(2):200 − 211. doi: 10.1007/s11434-009-0202-7 |
[26] |
翟远征,郭慧,滕彦国,等. 北京大气降水中氚时间序列的恢复[J]. 原子能科学技术,2013,47(9):1661 − 1664. [ZHAI Yuanzheng,GUO Hui,TENG Yanguo,et al. Reconstruction of tritium time series in precipitation of Beijing[J]. Atomic Energy Science and Technology,2013,47(9):1661 − 1664. (in Chinese with English abstract)
|
[27] | CLARK I D,FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton,FL:CRC Press/Lewis Publishers,1997:80 − 86. |
[28] |
汪建国,陈代钊,严德天. 重大地质转折期的碳、硫循环与环境演变[J]. 地学前缘,2009,16(6):33 − 47. [WANG Jianguo,CHEN Daizhao,YAN Detian. Variation in carbon and sulphur isotopes and environments during the critical geological transitions[J]. Earth Science Frontiers,2009,16(6):33 − 47. (in Chinese with English abstract)
|
[29] |
洪业汤,张鸿斌,朱詠煊,等. 中国大气降水的硫同位素组成特征[J]. 自然科学进展,1994,4(6):741 − 745. [HONG Yetang,ZHANG Hongbin,ZHU Yongxuan,et al. Characteristics of sulfur isotopic composition of meteoric water in China[J]. Progress in Natural Science,1994,4(6):741 − 745. (in Chinese)
|
[30] |
肖琼,杨雷,蒲俊兵,等. 重庆温塘峡背斜地表水-地下水-浅层地热水中硫同位素的环境指示意义研究[J]. 地质学报,2016,90(8):1945 − 1954. [XIAO Qiong,YANG Lei,PU Junbing,et al. The environmental significance of sulfur isotope in surface water-ground water-shallow thermal water in Wentang gorge anticline,Chongqing,China[J]. Acta Geologica Sinica,2016,90(8):1945 − 1954. (in Chinese with English abstract)
|
[31] |
罗璐,庞忠和,杨峰田. 苏北盆地建湖隆起碳酸盐岩储层中的硫酸盐型热矿水成因[J]. 地学前缘,2015,22(2):263 − 270. [LUO Lu,PANG Zhonghe,YANG Fengtian. Genesis analysis of sulfate thermal mineral water in carbonate aquifers at Jianhu Uplift,Subei Basin[J]. Earth Science Frontiers,2015,22(2):263 − 270. (in Chinese with English abstract)
|
[32] |
贾晓岑,周建伟,朱恒华,等. 招远金矿区水体中硫同位素特征及其对污染来源的指示[J]. 水文地质工程地质,2020,47(5):179 − 188. [JIA Xiaocen,ZHOU Jianwei,ZHU Henghua,et al. Characteristics of sulfur isotope in water bodies near the Zhaoyuan gold mine area and its indicative function of pollution sources[J]. Hydrogeology & Engineering Geology,2020,47(5):179 − 188. (in Chinese with English abstract)
|
[33] | ZHANG Weibin,DU Jianguo,ZHOU Xiaocheng,et al. Mantle volatiles in spring gases in the Basin and Range Province on the west of Beijing,China:constraints from helium and carbon isotopes[J]. Journal of Volcanology and Geothermal Research,2016,309:45 − 52. doi: 10.1016/j.jvolgeores.2015.10.024 |
[34] | BROWN S T,KENNEDY B M,DEPAOLO D J,et al. Ca,Sr,O and D isotope approach to defining the chemical evolution of hydrothermal fluids:Example from Long Valley,CA,USA[J]. Geochimica et Cosmochimica Acta,2013,122:209 − 225. doi: 10.1016/j.gca.2013.08.011 |
[35] | MILLOT R,HEGAN A,NÉGREL P. Geothermal waters from the Taupo Volcanic Zone,New Zealand:Li,B and Sr isotopes characterization[J]. Applied Geochemistry,2012,27(3):677 − 688. doi: 10.1016/j.apgeochem.2011.12.015 |
[36] |
袁利娟,张进平,何云成,等. 北京市通州区地热流体水化学和同位素特征及其地热学意义[J]. 地质论评,2021,67(5):1545 − 1556. [YUAN Lijuan,ZHANG Jinping,HE Yuncheng,et al. Hydrochemical and isotopic characteristics of geothermal fluids in Tongzhou District,Beijing,and their geothermal significance[J]. Geological Review,2021,67(5):1545 − 1556. (in Chinese with English abstract)
|
[37] | GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3 |
[38] |
李义曼,罗霁,陈凯,等. 广东省丰良地热田高氟地热流体成因及热储温度评价[J]. 地质论评,2023,69(4):1337 − 1348. [LI Yiman,LUO Ji,CHEN Kai,et al. Genesis of geothermal fluid with high fluorine content and reservoir temperature assessment in Fengliang geothermal field,eastern Guangdong[J]. Geological Review,2023,69(4):1337 − 1348. (in Chinese with English abstract)
|
Geological overview of the study area
Distribution map of sampling point locations and geological profile of sampling area
Piper diagram of the water samples in the study area
Gibbs diagrams and the relationship between c(Ca2+)/c(Na+ ) and c(
Relationship between Ca2++Mg2+ and other ions (
Relationship between ρ(Cl−) and other ions (Na++K+ , SiO2 ) in geothermal water, geothermal spring, river water, and shallow groundwater
Relationship between δ18O and δD in geothermal water, geothermal spring, river water, and shallow groundwater in the Maojingba geothermal field
Relationship between δ34S-δ18O, and c(
Relationship between ρ(Sr) and n(87Sr)/n(86Sr) in geothermal water, geothermal spring, river water, and shallow groundwater
Relationship between c(Ca2+)/c(Sr2+) and n(87Sr)/n(86Sr) in geothermal water, geothermal spring, river water, and shallow groundwater
Na—K—Mg diagram of geot hermal water, geothermal spring, river water, and shallow groundwater in the Maojingba geothermal field
Geothermal reservoir temperature based on multi-mineral thermometer