2022 Vol. 49, No. 6
Article Contents

WEI Hongshan, WANG Weizhi, XU Yongfu, BAI Yufan, YAN Zhenqiang, WANG Hao. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.202202025
Citation: WEI Hongshan, WANG Weizhi, XU Yongfu, BAI Yufan, YAN Zhenqiang, WANG Hao. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.202202025

Tensile strength characteristics and calculation methods of the cement stabilized soil

More Information
  • Cement stabilized soil has the advantages of high strength, small deformation, simple construction operation, easy quality control and remarkable economic benefits. It is widely used in subgrade filling, foundation pit backfilling, slope protection and foundation replacement. Soil-cement cracks affect the normal operation of roadbed engineering and may even endanger the safety of railway roadbed. Therefore, the design of cracks and deformation structures of railway subgrade or foundation requires a certain degree of understanding of the tensile strength of the compact-filled soil, and it is of great significance to determine the tensile strength of the cement-improved soil. The crack resistance of the cement stabilized soil is an important factor affecting engineering application. Tensile strength is the key parameter to measure the crack resistance of the cement stabilized soil. In this paper, a direct test method to measure the tensile strength of the cement stabilized soil is designed in the conventional unconfined compression apparatus. The effects of cement content, curing age, water content and dry density on the tensile strength of the cement stabilized soil are systematically studied. The tensile strength of the cement stabilized soil increases with the increasing cement content, curing age and dry density, and decreases with the increasing moisture content. The exponential function relationship between the tensile strength and et/A (et is the void ratio of cement stabilized soil) is established. The correlation between the tensile strength and unconfined compressive strength and matrix suction is also statistically established.

  • 加载中
  • [1] 杨滨,顾小安,黄寅春,等. 水泥土的强度特性[J]. 公路,2006,51(7):130 − 135. [YANG Bin,GU Xiaoan,HUANG Yinchun,et al. Strength characteristics of cement-stabilized soil[J]. Highway,2006,51(7):130 − 135. (in Chinese with English abstract) doi: 10.3969/j.issn.0451-0712.2006.07.033

    CrossRef Google Scholar

    [2] 邢皓枫,张好,李浩铭. 高含盐水泥土的力学特性及微观结构研究[J]. 水文地质工程地质,2021,48(3):102 − 109. [XING Haofeng,ZHANG Hao,LI Haoming. Mechanical characteristics and microstructure of salt-rich cement-soil[J]. Hydrogeology & Engineering Geology,2021,48(3):102 − 109. (in Chinese with English abstract)

    Google Scholar

    [3] 王许诺,杨平,鲍俊安,等. 冻结水泥土无侧限抗压试验研究[J]. 水文地质工程地质,2013,40(3):79 − 84. [WANG Xu-nuo,YANG Ping,BAO Jun-an,et al. Test research on unconfined compressive strength of freezing cement soil[J]. Hydrogeology & Eng Geology,2013,40(3):79 − 84. (in Chinese with English abstract)

    Google Scholar

    [4] 耿凯强,李晓丽. 单轴压缩下红色砒砂岩水泥土的能量演化机制研究[J]. 水文地质工程地质,2020,47(5):134 − 141. [GENG Kaiqiang,LI Xiaoli. Energy evolution mechanism of red Pisha-sandstone cement soil under uniaxial compression[J]. Hydrogeology & Engineering Geology,2020,47(5):134 − 141. (in Chinese with English abstract)

    Google Scholar

    [5] 陈鑫,张泽,李东庆. 尺寸和加载速率对冻结水泥土单轴压缩影响[J]. 水文地质工程地质,2019,46(6):74 − 82. [CHEN Xin,ZHANG Ze,LI Dongqing. Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil[J]. Hydrogeology & Engineering Geology,2019,46(6):74 − 82. (in Chinese with English abstract)

    Google Scholar

    [6] 朱俊高,梁彬,陈秀鸣,等. 击实土单轴抗拉强度试验研究[J]. 河海大学学报(自然科学版),2007,35(2):186 − 190. [ZHU Jungao,LIANG Bin,CHEN Xiuming,et al. Experimental study on unaxial tensile strength of compacted soils[J]. Journal of Hohai University (Natural Sciences),2007,35(2):186 − 190. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-1980.2007.02.015

    CrossRef Google Scholar

    [7] CONSOLI N C,CRUZ R C,FLOSS M F,et al. Parameters controlling tensile and compressive strength of artificially cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(5):759 − 763. doi: 10.1061/(asce)gt.1943-5606.0000278

    CrossRef Google Scholar

    [8] CONSOLI N C,DA FONSECA A V,CRUZ R C,et al. Voids/cement ratio controlling tensile strength of cement-treated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(11):1126 − 1131. doi: 10.1061/(asce)gt.1943-5606.0000524

    CrossRef Google Scholar

    [9] VISWANADHAM B V S,JHA B K,PAWAR S N. Experimental study on flexural testing of compacted soil beams[J]. Journal of Materials in Civil Engineering,2010,22(5):460 − 468. doi: 10.1061/(asce)mt.1943-5533.0000045

    CrossRef Google Scholar

    [10] 凌道盛,徐泽龙,蔡武军,等. 压实黏土梁弯曲开裂性状试验研究[J]. 岩土工程学报,2015,37(7):1165 − 1172. [LING Daosheng,XU Zelong,CAI Wujun,et al. Experimental study on characteristics of bending cracks of compacted soil beams[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1165 − 1172. (in Chinese with English abstract) doi: 10.11779/CJGE201507001

    CrossRef Google Scholar

    [11] 郭飞,何昌荣,朱安龙,等. 黏性土抗拉强度的轴向压裂法试验研究[J]. 水电站设计,2005,21(2):66 − 68. [GUO Fei,HE Changrong,ZHU Anlong,et al. Experimental study on tensile strength of clay by axial fracturing[J]. Design of Hydroelectric Power Station,2005,21(2):66 − 68. (in Chinese) doi: 10.3969/j.issn.1003-9805.2005.02.018

    CrossRef Google Scholar

    [12] 刘正和,杨录胜,廉浩杰,等. 砂岩钻孔轴向预制裂缝定向压裂试验研究[J]. 煤炭学报,2019,44(7):2057 − 2065. [LIU Zhenghe,YANG Lusheng,LIAN Haojie,et al. Experimental study of directional fracturing in sandstones with prefabricated cracks in the axial direction of borehole[J]. Journal of China Coal Society,2019,44(7):2057 − 2065. (in Chinese with English abstract)

    Google Scholar

    [13] 沈忠言,刘永智,彭万巍,等. 径向压裂法在冻土抗拉强度测定中的应用[J]. 冰川冻土,1994,16(3):224 − 231. [SHEN Zhongyan,LIU Yongzhi,PENG Wanwei,et al. Application of the radial—splitting method to determining tensile strength of frozen soil[J]. Journal of Glaciolgy and Geocryology,1994,16(3):224 − 231. (in Chinese with English abstract)

    Google Scholar

    [14] 周鸿逵. 三轴拉伸试验中试样的断裂机理[J]. 岩土工程学报,1984,6(3):11 − 23. [ZHOU Hongkui. The mechanism of fracture of soil samples in triaxial tensile test[J]. Chinese Journal of Geotechnical Engineering,1984,6(3):11 − 23. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1984.03.002

    CrossRef Google Scholar

    [15] 刘俊新,陈忠富,徐伟芳. 压实粘性土三轴拉伸试验研究[J]. 浙江工业大学学报,2012,40(2):183 − 187. [LIU Junxin,CHEN Zhongfu,XU Weifang. Experimental research on triaxial extension of compacted clay[J]. Journal of Zhejiang University of Technology,2012,40(2):183 − 187. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4303.2012.02.015

    CrossRef Google Scholar

    [16] DAVID SUITS L,SHEAHAN T C,NAHLAWI H,et al. A direct tensile strength testing method for unsaturated geomaterials[J]. Geotechnical Testing Journal,2004,27(4):11767. doi: 10.1520/gtj11767

    CrossRef Google Scholar

    [17] TOLLENAAR R N,VAN PAASSEN L A,JOMMI C. Experimental evaluation of the effects of pull rate on the tensile behavior of a clay[J]. Applied Clay Science,2017,144:131 − 140. doi: 10.1016/j.clay.2017.04.026

    CrossRef Google Scholar

    [18] TRABELSI H,ROMERO E,JAMEI M. Tensile strength during drying of remoulded and compacted clay:the role of fabric and water retention[J]. Applied Clay Science,2018,162:57 − 68. doi: 10.1016/j.clay.2018.05.032

    CrossRef Google Scholar

    [19] BECKETT C T S,SMITH J C,CIANCIO D,et al. Tensile strengths of flocculated compacted unsaturated soils[J]. Géotechnique Letters,2015,5(4):254 − 260. doi: 10.1680/jgele.15.00087

    CrossRef Google Scholar

    [20] DENIZ AKIN I,LIKOS W J. Brazilian tensile strength testing of compacted clay[J]. Geotechnical Testing Journal,2017,40(4):20160180. doi: 10.1520/gtj20160180

    CrossRef Google Scholar

    [21] MASOUMI H,ROSHAN H,HEDAYAT A,et al. Scale-size dependency of intact rock under point-load and indirect tensile Brazilian testing[J]. International Journal of Geomechanics,2018,18(3):04018006. doi: 10.1061/(asce)gm.1943-5622.0001103

    CrossRef Google Scholar

    [22] ASTM STP 740: Laboratory Shear Strength of Soil[S]. American Society for Testing and Materials, 1981: 130 − 144.

    Google Scholar

    [23] IBARRA S Y,MCKYES E,BROUGHTON R S. Measurement of tensile strength of unsaturated sandy loam soil[J]. Soil and Tillage Research,2005,81(1):15 − 23. doi: 10.1016/j.still.2004.04.002

    CrossRef Google Scholar

    [24] LAKSHMIKANTHA M R,PRAT P C,LEDESMA A. Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal,2012,49(3):264 − 284. doi: 10.1139/t11-102

    CrossRef Google Scholar

    [25] STIRLING R A,HUGHES P,DAVIE C T,et al. Tensile behaviour of unsaturated compacted clay soils—A direct assessment method[J]. Applied Clay Science,2015,112/113:123 − 133. doi: 10.1016/j.clay.2015.04.011

    CrossRef Google Scholar

    [26] VARSEI M,MILLER G A,HASSANIKHAH A. Novel approach to measuring tensile strength of compacted clayey soil during desiccation[J]. International Journal of Geomechanics,2016,16(6):D4016011. doi: 10.1061/(asce)gm.1943-5622.0000705

    CrossRef Google Scholar

    [27] TAMRAKAR S B, MITACHI T, TOYOSAWA Y, et al. Development of a new soil tensile strength test apparatus[C]//Geo-Frontiers Congress 2005. Austin, Texas, USA. Reston, VA, USA: American Society of Civil Engineers, 2005: 1 − 10. http://dx. doi.org/10.1061/ 40785(164)26.

    Google Scholar

    [28] NAMIKAWA T,KOSEKI J. Evaluation of tensile strength of cement-treated sand based on several types of laboratory tests[J]. Soils and Foundations,2007,47(4):657 − 674. doi: 10.3208/sandf.47.657

    CrossRef Google Scholar

    [29] YIN P H,VANAPALLI S K. Model for predicting tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal,2018,55(9):1313 − 1333. doi: 10.1139/cgj-2017-0376

    CrossRef Google Scholar

    [30] SALIMI K,CERATO A B,VAHEDIFARD F,et al. General model for the uniaxial tensile strength characteristic curve of unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(7):04021051. doi: 10.1061/(asce)gt.1943-5606.0002567

    CrossRef Google Scholar

    [31] LORENZO G A,BERGADO D T. Fundamental parameters of cement-admixed clay—New approach[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(10):1042 − 1050. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1042)

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(1910) PDF downloads(146) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint