2022 Vol. 49, No. 4
Article Contents

WANG Jiaquan, QI Hangxiang, HUANG Shibin, TANG Yi. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 81-90. doi: 10.16030/j.cnki.issn.1000-3665.202109022
Citation: WANG Jiaquan, QI Hangxiang, HUANG Shibin, TANG Yi. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 81-90. doi: 10.16030/j.cnki.issn.1000-3665.202109022

Large-scale direct shear test on the interface between geogrid and gravel-soil mixture

  • When geosynthetics are used in various types of reinforced soil projects, the main problems are the stability, safety and long-term service performance of the reinforced structures. The friction characteristics of the reinforced soil interface have a direct impact on the stability and safety of the reinforced structures. However, there are many researches on clay and sand, and there are few reports on the interface interaction between gravel soil mixture and geogrid. In this study the reconstruction and extension project of Lanzhou-Haikou expressway from Nanning to Fangchenggang in Guangxi is taken as the background, the indoor large direct shear test of the gravel-soil mixture and geogrid interface shear characteristics are studied, and the effects of the different shear rate, degree of compaction and normal stress on the interaction characteristics of direct shear interface are discussed. The test results show that when the normal stress σv ≤30 kPa, the peak value of the interfacial shear stress presents a linear growth trend with the increasing compaction degree. With the further increase of normal stress, the growth trend changes from linear growth to polygonal growth. With the increasing shear rate, the shear stress at the interface between the reinforcement and soil is maximum at the shear rate v =1.5 mm/min. The interfacial cohesion increases with the increasing compaction degree, and the interfacial friction angle is just the opposite. Under different shear rates, the interfacial cohesion and friction angle fluctuate within a certain range of 38.725 kPa to 50.495kPa and 25.873° to 29.683°, respectively. The direct shear curve of the reinforced-soil direct shear interface is characterized by strain hardening, and the shear displacement corresponding to the inflection point under different influencing factors is mostly concentrated between 0.83% and 1.83% of the shear area length. The results can provide design parameters and theoretical reference for reinforced engineering construction with gravel - soil mixture as filler.

  • 加载中
  • [1] 徐超, 贾斌, 罗玉珊. 间接加筋作用及加筋土挡墙离心模型试验验证[J]. 水文地质工程地质,2015,42(2):77 − 82. [XU Chao, JIA Bin, LUO Yushan. Indirect reinforcement effect and verification by centrifuge modeling of reinforced soil wall[J]. Hydrogeology & Engineering Geology,2015,42(2):77 − 82. (in Chinese with English abstract)

    Google Scholar

    XU Chao, JIA Bin, LUO Yushan. Indirect reinforcement effect and verification by centrifuge modeling of reinforced soil wall[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 77-82. (in Chinese with English abstract)

    Google Scholar

    [2] 刘倩萁, 张孟喜, 洪成雨. 基于光纤传感技术的土工格栅变形及受力研究[J]. 水文地质工程地质,2019,46(6):119 − 125. [LIU Qianqi, ZHANG Mengxi, HONG Chengyu. A study of deformation and stress of geogrids based on optical fiber sensing technology[J]. Hydrogeology & Engineering Geology,2019,46(6):119 − 125. (in Chinese with English abstract)

    Google Scholar

    LIU Qianqi, ZHANG Mengxi, HONG Chengyu. A study of deformation and stress of geogrids based on optical fiber sensing technology[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 119-125. (in Chinese with English abstract)

    Google Scholar

    [3] 黄英, 何发祥, 符必昌. 玻璃纤维与红土的界面作用特性研究[J]. 水文地质工程地质,2003,30(4):7 − 12. [HUANG Ying, HE Faxiang, FU Bichang. Interaction between the fiberglass and laterite[J]. Hydrogeology & Engineering Geology,2003,30(4):7 − 12. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2003.04.002

    CrossRef Google Scholar

    HUANG Ying, HE Faxiang, FU Bichang. Interaction between the fiberglass and laterite[J]. Hydrogeology & Engineering Geology, 2003, 30(4): 7-12. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2003.04.002

    CrossRef Google Scholar

    [4] 孟凡祥, 徐超. 筋土之间直剪试验与拉拔试验的对比分析[J]. 水文地质工程地质,2009,36(6):80 − 84. [MENG Fanxiang, XU Chao. Comparation and analyses of direct shear test and pull-out test of the interface between soils and geosynthetics[J]. Hydrogeology & Engineering Geology,2009,36(6):80 − 84. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.06.018

    CrossRef Google Scholar

    MENG Fanxiang, XU Chao. Comparation and analyses of direct shear test and pull-out test of the interface between soils and geosynthetics[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 80-84. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.06.018

    CrossRef Google Scholar

    [5] LYONS C K, FANNIN J. A comparison of two design methods for unpaved roads reinforced with geogrids[J]. Canadian Geotechnical Journal,2006,43(12):1389 − 1394. doi: 10.1139/t06-075

    CrossRef Google Scholar

    [6] 包承纲. 土工合成材料界面特性的研究和试验验证[J]. 岩石力学与工程学报,2006,25(9):1735 − 1744. [BAO Chenggang. Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(9):1735 − 1744. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.09.002

    CrossRef Google Scholar

    BAO Chenggang. Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1735-1744. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.09.002

    CrossRef Google Scholar

    [7] 朱顺然, 徐超, 丁金华. 土工织物-砂土界面的叠环式剪切试验[J]. 岩土力学,2018,39(5):1775 − 1780. [ZHU Shunran, XU Chao, DING Jinhua. Laminated shear test of geotextile-sand interface[J]. Rock and Soil Mechanics,2018,39(5):1775 − 1780. (in Chinese with English abstract)

    Google Scholar

    ZHU Shunran, XU Chao, DING Jinhua. Laminated shear test of geotextile-sand interface[J]. Rock and Soil Mechanics, 2018, 39(5): 1775-1780. (in Chinese with English abstract)

    Google Scholar

    [8] 徐超, 廖星樾. 土工格栅与砂土相互作用机制的拉拔试验研究[J]. 岩土力学,2011,32(2):423 − 428. [XU Chao, LIAO Xingyue. Researches on interacton mechanism between geogrid and sand by pull-out tests[J]. Rock and Soil Mechanics,2011,32(2):423 − 428. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.02.017

    CrossRef Google Scholar

    XU Chao, LIAO Xingyue. Researches on interacton mechanism between geogrid and sand by pull-out tests[J]. Rock and Soil Mechanics, 2011, 32(2): 423-428. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.02.017

    CrossRef Google Scholar

    [9] ZHOU J, CHEN J F, XUE J F, et al. Micro-mechanism of the interaction between sand and geogrid transverse ribs[J]. Geosynthetics International,2012,19(6):426 − 437. doi: 10.1680/gein.12.00028

    CrossRef Google Scholar

    [10] 王协群, 张俊峰, 邹维列, 等. 格栅-土界面抗剪强度模型及其影响因素[J]. 土木工程学报,2013,46(4):133 − 141. [WANG Xiequn, ZHANG Junfeng, ZOU Weilie, et al. A shear strength model of geogrid-soil interface and its influence factors[J]. China Civil Engineering Journal,2013,46(4):133 − 141. (in Chinese with English abstract)

    Google Scholar

    WANG Xiequn, ZHANG Junfeng, ZOU Weilie, et al. A shear strength model of geogrid-soil interface and its influence factors[J]. China Civil Engineering Journal, 2013, 46(4): 133-141. (in Chinese with English abstract)

    Google Scholar

    [11] 王家全, 周健, 黄柳云, 等. 土工合成材料大型直剪界面作用宏细观研究[J]. 岩土工程学报,2013,35(5):908 − 915. [WANG Jiaquan, ZHOU Jian, HUANG Liuyun, et al. Macroscopic and mesoscopic studies of interface interaction on geosynthetics by use of large direct shear tests[J]. Chinese Journal of Geotechnical Engineering,2013,35(5):908 − 915. (in Chinese with English abstract)

    Google Scholar

    WANG Jiaquan, ZHOU Jian, HUANG Liuyun, et al. Macroscopic and mesoscopic studies of interface interaction on geosynthetics by use of large direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 908-915. (in Chinese with English abstract)

    Google Scholar

    [12] MOSALLANEZHAD M, ALFARO M C, HATAF N, et al. Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil[J]. Geotextiles and Geomembranes,2016,44(3):457 − 462. doi: 10.1016/j.geotexmem.2015.07.005

    CrossRef Google Scholar

    [13] 郑俊杰, 曹文昭, 周燕君, 等. 三向土工格栅筋-土界面特性拉拔试验研究[J]. 岩土力学,2017,38(2):317 − 324. [ZHENG Junjie, CAO Wenzhao, ZHOU Yanjun, et al. Pull-out test study of interface behavior between triaxial geogrid and soil[J]. Rock and Soil Mechanics,2017,38(2):317 − 324. (in Chinese with English abstract)

    Google Scholar

    ZHENG Junjie, CAO Wenzhao, ZHOU Yanjun, et al. Pull-out test study of interface behavior between triaxial geogrid and soil[J]. Rock and Soil Mechanics, 2017, 38(2): 317-324. (in Chinese with English abstract)

    Google Scholar

    [14] 靳静, 杨广庆, 刘伟超. 横肋间距对土工格栅拉拔特性影响试验研究[J]. 中国铁道科学,2017,38(5):1 − 8. [JIN Jing, YANG Guangqing, LIU Weichao. Experimental study on effect of transverse rib spacing on geogrid pull-out characteristics[J]. China Railway Science,2017,38(5):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2017.05.01

    CrossRef Google Scholar

    JIN Jing, YANG Guangqing, LIU Weichao. Experimental study on effect of transverse rib spacing on geogrid pull-out characteristics[J]. China Railway Science, 2017, 38(5): 1-8. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2017.05.01

    CrossRef Google Scholar

    [15] 刘开富, 许家培, 周青松, 等. 土工格栅–土体界面特性大型直剪试验研究[J]. 岩土工程学报, 2019, 41(增刊1): 185 − 188

    Google Scholar

    LIU Kaifu, XU Jiapei, ZHOU Qingsong, et al. Large-scale direct shear tests on properties of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup 1): 185 − 188. (in Chinese with English abstract)

    Google Scholar

    [16] PANT A, DATTA M, RAMANA G V, et al. Measurement of role of transverse and longitudinal members on pullout resistance of PET geogrid[J]. Measurement,2019,148:106944. doi: 10.1016/j.measurement.2019.106944

    CrossRef Google Scholar

    [17] NAMJOO A M, JAFARI K, TOUFIGH V. Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior[J]. Transportation Geotechnics,2020,24:100403. doi: 10.1016/j.trgeo.2020.100403

    CrossRef Google Scholar

    [18] MIAO C X, ZHENG J J, ZHANG R J, et al. DEM modeling of pullout behavior of geogrid reinforced ballast: the effect of particle shape[J]. Computers and Geotechnics,2017,81:249 − 261. doi: 10.1016/j.compgeo.2016.08.028

    CrossRef Google Scholar

    [19] 王志杰, 杨广庆, 王贺, 等. 刚性与柔性顶部边界下筋土界面特性的细观数值研究[J]. 岩土工程学报,2019,41(5):967 − 973. [WANG Zhijie, YANG Guangqing, WANG He, et al. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering,2019,41(5):967 − 973. (in Chinese with English abstract)

    Google Scholar

    WANG Zhijie, YANG Guangqing, WANG He, et al. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 967-973. (in Chinese with English abstract)

    Google Scholar

    [20] 刘续, 唐晓武, 申昊, 等. 加筋土结构中筋材拉拔力的分布规律研究[J]. 岩土工程学报,2013,35(4):800 − 804. [LIU Xu, TANG Xiaowu, SHEN Hao, et al. Stress distribution of reinforcement of reinforced soil structures under drawing force[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):800 − 804. (in Chinese with English abstract)

    Google Scholar

    LIU Xu, TANG Xiaowu, SHEN Hao, et al. Stress distribution of reinforcement of reinforced soil structures under drawing force[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 800-804. (in Chinese with English abstract)

    Google Scholar

    [21] ZHU H H, ZHANG C C, TANG C S, et al. Modeling the pullout behavior of short fiber in reinforced soil[J]. Geotextiles and Geomembranes,2014,42(4):329 − 338. doi: 10.1016/j.geotexmem.2014.05.005

    CrossRef Google Scholar

    [22] CHEN J H, SAYDAM S, HAGAN P C. An analytical model of the load transfer behavior of fully grouted cable bolts[J]. Construction and Building Materials,2015,101:1006 − 1015. doi: 10.1016/j.conbuildmat.2015.10.099

    CrossRef Google Scholar

    [23] 陈榕, 李博, 郝冬雪, 等. 基于黏聚力模型的土工格栅筋土界面作用模拟方法[J]. 岩土工程学报,2020,42(5):934 − 940. [CHEN Rong, LI Bo, HAO Dongxue, et al. Simulation for interaction between geogrids and soil by cohesive zone model[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):934 − 940. (in Chinese with English abstract)

    Google Scholar

    CHEN Rong, LI Bo, HAO Dongxue, et al. Simulation for interaction between geogrids and soil by cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 934-940. (in Chinese with English abstract)

    Google Scholar

    [24] 王军, 王攀, 刘飞禹, 等. 密实度不同时格栅–砂土界面循环剪切及其后直剪特性[J]. 岩土工程学报,2016,38(2):342 − 349. [WANG Jun, WANG Pan, LIU Feiyu, et al. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering,2016,38(2):342 − 349. (in Chinese with English abstract) doi: 10.11779/CJGE201602019

    CrossRef Google Scholar

    WANG Jun, WANG Pan, LIU Feiyu, et al. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. (in Chinese with English abstract) doi: 10.11779/CJGE201602019

    CrossRef Google Scholar

    [25] 中华人民共和国交通部. 公路工程土工合成材料试验规程: JTGE 50 —2006[S]. 北京: 人民交通出版社, 2009

    Google Scholar

    Ministry of Transport of the People’s Republic of China. Test methods of geosynthetics for highway engineering: JTG E 50— 2006[S]. Beijing: China Communications Press, 2009. (in Chinese)

    Google Scholar

    [26] 包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利水电出版社, 2008

    Google Scholar

    BAO Chenggang. The principle and application of geosynthetics in engineering[M]. Beijing: China Water Power Press, 2008. (in Chinese)

    Google Scholar

    [27] 徐肖峰, 魏厚振, 孟庆山, 等. 直剪剪切速率对粗粒土强度与变形特性的影响[J]. 岩土工程学报,2013,35(4):728 − 733. [XU Xiaofeng, WEI Houzhen, MENG Qingshan, et al. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):728 − 733. (in Chinese with English abstract)

    Google Scholar

    XU Xiaofeng, WEI Houzhen, MENG Qingshan, et al. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. (in Chinese with English abstract)

    Google Scholar

    [28] 徐超, 孟凡祥. 剪切速率和材料特性对筋-土界面抗剪强度的影响[J]. 岩土力学,2010,31(10):3101 − 3106. [XU Chao, MENG Fanxiang. Effects of shear rate and material properties on shear strength of geosynthetic-soil interface[J]. Rock and Soil Mechanics,2010,31(10):3101 − 3106. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.10.012

    CrossRef Google Scholar

    XU Chao, MENG Fanxiang. Effects of shear rate and material properties on shear strength of geosynthetic-soil interface[J]. Rock and Soil Mechanics, 2010, 31(10): 3101-3106. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.10.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(1998) PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint