| Citation: | YI Fu, JIANG Xutong, LI Jun, JIN Hongsong. An analysis of the deterioration mechanism of a grouting stone under the ion erosion[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202109005 |
Research on the degradation mechanism of cement-water glass grouting stones (C-S stones) in an environment of ion erosion is lacking. The unconfined compressive strength test is conducted to analyze the change law of macro-mechanical properties of the C-S calculus body under different age conditions after the erosion of three different concentrations of sulfate. A combination of SEM, EDS and XRD is used to observe the mesostructure and chemical composition changes of the stone body, and reveal the mechanism of ion erosion damage of the grouting stone body. The results show that within 28 days of erosion, different concentrations of ionic solutions has no significant effect on the growth of stone strength. From 28 to 90 days of erosion, the growth of stone strength in high concentration solution is significantly degraded, and when the concentration of
| [1] | 巫茂寅,王起才,张戎令,等. 复合水泥基-水玻璃双液注浆材料胶凝性能及抗压强度试验研究[J]. 硅酸盐通报,2016,35(9):2741 − 2746. [WU Maoyin,WANG Qicai,ZHANG Rongling,et al. Cementing performance and compressive strength of complex cementitions-sodium silicate two-shot grouting materials[J]. Bulletin of the Chinese Ceramic Society,2016,35(9):2741 − 2746. (in Chinese with English abstract) |
| [2] | 杨建康,陆海军,李继祥,等. 水泥-水玻璃双液注浆材料工程性能及孔隙结构[J]. 大连理工大学学报,2016,56(3):252 − 256. [YANG Jiankang,LU Haijun,LI Jixiang,et al. Engineering properties and pore structure of cement-sodium silicate double solution grouting material[J]. Journal of Dalian University of Technology,2016,56(3):252 − 256. (in Chinese with English abstract) |
| [3] | ELAHI M M A, SHEARER C R, NASER RASHID REZA A, et al. Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review[J]. Construction and Building Materials, 2021, 281: 122628. |
| [4] | CHANG H L, JIN Z Q, WANG Penggang, et al. Comprehensive resistance of fair-faced concrete suffering from sulfate attack under marine environments[J]. Construction and Building Materials, 2021, 277: 122312. |
| [5] | KAUFMANN J, LOSER R, WINNEFELD F, et al. Sulfate resistance and phase composition of shotcrete[J]. Tunnelling and Underground Space Technology, 2021, 109: 103760. |
| [6] | 王洪波. 海水侵蚀—渗流作用下砂层注浆扩散加固与劣化机理及应用[D]. 济南: 山东大学, 2019 WANG Hongbo. Study on penetration, reinforcement and deterioration mechanism of grouting in sand layer under seawater erosion-seepage and its application[D]. Jinan: Shandong University, 2019. (in Chinese with English abstract) |
| [7] | 刘赞群,裴敏,张丰燕,等. 半浸泡在Na2SO4溶液中水泥净浆不同部位化学侵蚀产物对比[J]. 建筑材料学报,2020,23(3):485 − 492. [LIU Zanqun,PEI Min,ZHANG Fengyan,et al. Comparison of chemical attack products in different zones of cement paste partially immersed in Na2SO4 solution[J]. Journal of Building Materials,2020,23(3):485 − 492. (in Chinese with English abstract) |
| [8] | 段德峰,黄显冲,王晓川. 受硫酸盐腐蚀混凝土微观结构分析[J]. 四川建筑科学研究,2015,41(2):202 − 207. [DUAN Defeng,HUANG Xianchong,WANG Xiaochuan. Microstructure analysis of concrete under sulfate corrosion[J]. Sichuan Building Science,2015,41(2):202 − 207. (in Chinese with English abstract) |
| [9] | 马向楠. 盐溶液侵蚀作用下涂层防护混凝土耐久性研究[D]. 沈阳: 沈阳建筑大学, 2019 MA Xiangnan. Study on durability of coated protective concrete under salt solution erosion[D]. Shenyang: Shenyang Jianzhu University, 2019. (in Chinese with English abstract) |
| [10] | 陈旭鹏, 庞建勇. 偏高岭土对混凝土抗复合盐侵蚀性能的研究[J]. 非金属矿, 2021, 44(1): 78 − 80 CHEN Xupeng, PANG Jianyong. Study on resistance of metakaolin to composite salt erosion of concrete[J]. Non-Metallic Mines, 2021, 44(1): 78 − 80. (in Chinese with English abstract) |
| [11] | 贺洪坤, 王超. 硫酸盐-氯盐侵蚀对充填体稳定性的影响试验研究[J]. 煤矿安全, 2021, 52(5): 54 − 58 HE Hongkun, WANG Chao. Experimental study on stability of backfill by sulfate and chloride erosion[J]. Safety in Coal Mines, 2021, 52(5): 54 − 58. (in Chinese with English abstract) |
| [12] | 张广泰, 陈勇, 鲁海波, 等. 硫酸盐侵蚀作用下纤维锂渣混凝土裂缝的分形特征[J]. 工程科学学报, 2022, 44(2): 208 − 216 ZHANG Guangtai, CHEN Yong, LU Haibo, et al. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208 − 216. (in Chinese with English abstract) |
| [13] | 李寒暝. ASR-氯盐-硫酸盐腐蚀协同作用下混凝土损伤过程数值模拟分析[J]. 水电站机电技术, 2022, 45(1): 85 − 87 LI Hanming. Numerical simulation analysis of concrete damage process under the synergistic action of ASR-chloride and sulfate corrosion[J]. Mechanical & Electrical Technique of Hydropower Station, 2022, 45(1): 85 − 87. (in Chinese) |
| [14] | 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69 − 77 ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete: A review[J]. Materials Reports, 2022, 36(1): 69 − 77. (in Chinese with English abstract) |
| [15] | 王盼, 黄英, 刘鹏, 等. 硫酸亚铁侵蚀红土的受力特性[J]. 水文地质工程地质, 2013, 40(4): 112 − 116 WANG Pan, HUANG Ying, LIU Peng, et al. Mechanical properties of ferrous sulfate erosion of laterite[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 112 − 116. (in Chinese with English abstract) |
| [16] | 何俊, 栗志翔, 石小康, 等. 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质, 2019, 46(6): 83 − 89 HE Jun, LI Zhixiang, SHI Xiaokang, et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 83 − 89. (in Chinese with English abstract) |
| [17] | 潘自林, 朱洁, 王福升, 等. 混凝土硫酸盐侵蚀破坏分析与研究[J]. 宁夏工程技术, 2022, 21(1): 34 − 39 PAN Zilin, ZHU Jie, WANG Fusheng, et al. Analysis and research on sulfate corrosion resistance of concrete with different mix proportions[J]. Ningxia Engineering Technology, 2022, 21(1): 34 − 39. (in Chinese with English abstract) |
| [18] | 杜兆文, 陈绍杰, 尹大伟, 等. 氯盐侵蚀环境下膏体充填体稳定性试验研究[J]. 中国矿业大学学报, 2021, 50(3): 532 − 538 DU Zhaowen, CHEN Shaojie, YIN Dawei, et al. Experimental study of stability of paste backfill under chloride erosion environment[J]. Journal of China University of Mining & Technology, 2021, 50(3): 532 − 538. (in Chinese with English abstract) |
Stone body erosion test
Changes of strength of the C-S nodules under different ion concentrations erosion
C-S stone apparent morphology with 20 g/L erosion for 28 days
C-S stone apparent morphology with 20 g/L erosion for 90 days
Microscopic image of the stone body under
Microscopic image of the stone body under
Microscopic image of the stone body under
Ca2+ number distribution of the EDS face eroded for 90 d by different ion solutions of 20 g/L
Microscopic image of the stone body in water immersion
XRD Energy spectrum of different salt solutions of 20 g/L after 90 days of erosion
Process diagram of the C-S stone body eroded by