2022 Vol. 49, No. 1
Article Contents

CAO Xinyi, ZHAI Yuanzheng, LI Muzi, PAN Chengzhong, ZHENG Fuxin, LU Hong, XIA Xuelian, TENG Yanguo, WANG Jinsheng. The suitability assessment of groundwater recharge by leakage of the Yongding River[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 20-29. doi: 10.16030/j.cnki.issn.1000-3665.202107069
Citation: CAO Xinyi, ZHAI Yuanzheng, LI Muzi, PAN Chengzhong, ZHENG Fuxin, LU Hong, XIA Xuelian, TENG Yanguo, WANG Jinsheng. The suitability assessment of groundwater recharge by leakage of the Yongding River[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 20-29. doi: 10.16030/j.cnki.issn.1000-3665.202107069

The suitability assessment of groundwater recharge by leakage of the Yongding River

More Information
  • Due to the effect of climate changes and human activities, groundwater over-exploitation and aquifer depletion have become global issues of concern. Artificial recharge of groundwater through a river has been paid more attention among a variety of artificial intervention measures. It is found that not all rivers or river reaches are suitable for artificial recharge of groundwater owing to the limitations of recharge potential by infiltration and storage capacity of the vadose zone. At present, there is still a lack of widely accepted suitability assessment methods. In this study, the Yongding River in the Beijing Plain section and the underlying aquifer are taken as the study area and the case study is carried out. Moreover, the measured data are used to verify the results. The suitability assessment model (LMBGITSC model) constructed by the index system method includes eight indexes: land use types of riverbed, sediment types of riverbed, channel width, channel topographic slope, medium types of the vadose zone, thickness of the vadose zone, specific yield of the vadose zone and horizontal permeability of the vadose zone. The results show that the suitability of groundwater recharge in the Yongding River changes from good degree to medium degree along the river flow direction (except the reaches carried out anti-seepage engineering), presenting a "step-type" evolution law. The proposed method is of good applicability and can also provide reference for similar regions.

  • 加载中
  • [1] 郭海朋, 李文鹏, 王丽亚, 等. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质,2021,48(3):162 − 171. [GUO Haipeng, LI Wenpeng, WANG Liya, et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology,2021,48(3):162 − 171. (in Chinese with English abstract)

    Google Scholar

    [2] DILLON P, PAGE D, VANDERZALM J, et al. A critical evaluation of combined engineered and aquifer treatment systems in water recycling[J]. Water Science and Technology,2008,57(5):753 − 762. doi: 10.2166/wst.2008.168

    CrossRef Google Scholar

    [3] JASECHKO S, SEYBOLD H, PERRONE D, et al. Widespread potential loss of streamflow into underlying aquifers across the USA[J]. Nature,2021,591(7850):391 − 395. doi: 10.1038/s41586-021-03311-x

    CrossRef Google Scholar

    [4] 费宇红, 崔广柏. 地下水人工调蓄研究进展与问题[J]. 水文,2006,26(4):10 − 14. [FEI Yuhong, CUI Guangbo. Development and problems: research on artificial adjustment of groundwater storage[J]. Journal of China Hydrology,2006,26(4):10 − 14. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0852.2006.04.003

    CrossRef Google Scholar

    [5] YIN W, TENG Y, ZHAI Y, et al. Suitability for developing riverside groundwater sources along Songhua River, Northeast China[J]. Human and Ecological Risk Assessment: An International Journal,2018,24(8):2088 − 2100. doi: 10.1080/10807039.2018.1438174

    CrossRef Google Scholar

    [6] WANG L, YE X, DU X. Suitability evaluation of river bank filtration along the Second Songhua River, China[J]. Water,2016,8(5):176. doi: 10.3390/w8050176

    CrossRef Google Scholar

    [7] 王兆庚, 郭祺忠, 练继建, 等. 建筑屋面雨水有压回补地下水理念与潜力评估[J]. 水利学报,2019,50(8):999 − 1009. [WANG Zhaogeng, GUO Qizhong, LIAN Jijian, et al. Concept and assessment of utilizing rooftop rainwater for pressurized groundwater recharge[J]. Journal of Hydrology Engineering,2019,50(8):999 − 1009. (in Chinese with English abstract)

    Google Scholar

    [8] GHAZAVI R, BABAEI S, ERFANIAN M. Recharge wells site selection for artificial groundwater recharge in an urban area using fuzzy logic technique[J]. Water Resources Management,2018,32(12):3821 − 3834. doi: 10.1007/s11269-018-2020-7

    CrossRef Google Scholar

    [9] DILLON P, STUYFZAND P, GRISCHEK T, et al. Sixty years of global progress in managed aquifer recharge[J]. Hydrogeology Journal,2019,27(1):1 − 30. doi: 10.1007/s10040-018-1841-z

    CrossRef Google Scholar

    [10] 席海洋, 冯起, 司建华, 等. 黑河下游额济纳三角洲河道渗漏对地下水补给研究综述[J]. 冰川冻土,2012,34(5):1241 − 1247. [XI Haiyang, FENG Qi, SI Jianhua, et al. A review of river course leakage in the Ejina delta in the lower reaches of Heihe River[J]. Journal of Glaciology and Geocryology,2012,34(5):1241 − 1247. (in Chinese with English abstract)

    Google Scholar

    [11] 杨小芳, 王明玉, 王丽亚, 等. 永定河生态修复地下水位主控因素与数值模拟预测不确定性[J]. 中国科学院大学学报,2015,32(2):192 − 199. [YANG Xiaofang, WANG Mingyu, WANG Liya, et al. Investigation of key controlling factors and numerical simulation uncertainty of the groundwater level companying with Yongding river ecological restoration[J]. Journal of University of Chinese Academy of Sciences,2015,32(2):192 − 199. (in Chinese with English abstract) doi: 10.7523/j.issn.2095-6134.2015.02.007

    CrossRef Google Scholar

    [12] BOUWER H. Artificial recharge of groundwater: hydrogeology and engineering[J]. Hydrogeology Journal,2002,10(1):121 − 142. doi: 10.1007/s10040-001-0182-4

    CrossRef Google Scholar

    [13] 束龙仓, 陶玉飞, 刘佩贵. 考虑水文地质参数不确定性的地下水补给量可靠度计算[J]. 水利学报,2008,39(3):346 − 350. [SHU Longcang, TAO Yufei, LIU Peigui. Reliability calculation method for groundwater recharge in consideration of uncertainty of hydrogeological parameters[J]. Journal of Hydrology Engineering,2008,39(3):346 − 350. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2008.03.014

    CrossRef Google Scholar

    [14] 王诏楷, 束龙仓, 刘波, 等. 孔隙结构对地下水回灌颗粒堵塞影响的试验研究[J]. 水利学报,2021,52(4):498 − 506. [WANG Zhaokai, SHU Longcang, LIU Bo, et al. Experimental research on the effects of pore structure on particle clogging of groundwater recharge[J]. Journal of Hydrology Engineering,2021,52(4):498 − 506. (in Chinese with English abstract)

    Google Scholar

    [15] 钟媛媛. 汾河上游河道渗漏对晋祠泉域岩溶地下水影响的数值模拟研究[D]. 太原: 太原理工大学, 2017.

    Google Scholar

    ZHONG Yuanyuan. Numerical simulation research on influence of channel leakage in Fenhe River upstearm on karst groundwater in Jinci Spring catchment [D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese with English abstract

    Google Scholar

    [16] 张广朋. 塔里木河干流上中游河床沉积物渗透系数及渗漏水量研究[D]. 乌鲁木齐: 新疆农业大学, 2016.

    Google Scholar

    ZHANG Guangpeng. Study on hydraulic conductivity of riverbed sediment and leakage water in upper and middle stream of Tarim River [D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese with English abstract

    Google Scholar

    [17] 马尧, 杨勇, 胡国金, 等. 永定河(北京段)生态补水对地下水的补给分析[J]. 北京水务,2020(4):22 − 27. [MA Yao, YANG Yong, HU Guojin, et al. Analysis of groundwater recharge by ecological water supply project in Yongding River (Beijing Section)[J]. Beijing Water,2020(4):22 − 27. (in Chinese with English abstract)

    Google Scholar

    [18] 胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质,2020,47(5):5 − 11. [HU Litang, GUO Jianli, ZHANG Shouquan, et al. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydrogeology & Engineering Geology,2020,47(5):5 − 11. (in Chinese with English abstract)

    Google Scholar

    [19] 李海军, 崔一娇, 任永强, 等. 永定河2020年春季生态补水对北京地下水涵养效果分析[J]. 城市地质,2021,16(2):133 − 138. [LI Haijun, CUI Yijiao, REN Yongqiang, et al. Analysis on the effect of ecological water replenishment of Yongding River in spring 2020 on groundwater conservation in Beijing[J]. Urban Geology,2021,16(2):133 − 138. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-1903.2021.02.002

    CrossRef Google Scholar

    [20] 张景华, 李世君, 李阳, 等. 北京地下水库建库条件及可利用库容初步分析[J]. 城市地质,2017,12(1):70 − 76. [ZHANG Jinghua, LI Shijun, LI Yang, et al. Analysis of construction conditions and available storage capacity of the underground reservoir in Beijing basin[J]. Urban Geology,2017,12(1):70 − 76. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-1903.2017.01.012

    CrossRef Google Scholar

    [21] 王立发, 邢国章, 江剑, 等. 北京市永定河地下水库水资源储蓄能力研究[J]. 城市地质,2013,8(1):18 − 22. [WANG Lifa, XING Guozhang, JIANG Jian, et al. Study on the infiltration and the storage capability of artificial adjustment on the Yongding River groundwater reservoir in Beijing[J]. Urban Geology,2013,8(1):18 − 22. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-1903.2013.01.004

    CrossRef Google Scholar

    [22] 王槿妍, 王材源, 刘翠珠, 等. 永定河生态补水水文要素变化分析[J]. 北京水务,2020(4):28 − 31. [WANG Jinyan, WANG Caiyuan, LIU Cuizhu, et al. Analysis on changes of hydrological elements of ecological water supply project in Yongding River[J]. Beijing Water,2020(4):28 − 31. (in Chinese)

    Google Scholar

    [23] 杨勇, 谷健芬, 李元春. 永定河长时放水条件下的入渗能力及影响范围分析[J]. 工程勘察,2019,47(6):29 − 35. [YANG Yong, GU Jianfen, LI Yuanchun. Analysis on infiltration capacity and influence range of Yongding River under the condition of long-time discharge[J]. Geotechnical Investigation & Surveying,2019,47(6):29 − 35. (in Chinese with English abstract)

    Google Scholar

    [24] ZHAI Y, GUO Y, ZHOU J, et al. The spatio-temporal variability of annual precipitation and its local impact factors during 1724-2010 in Beijing, China[J]. Hydrological Processes,2014,28(4):2192 − 2201. doi: 10.1002/hyp.9772

    CrossRef Google Scholar

    [25] 翟远征, 王金生. 北京市平原区地下水动态要素的时间变化及其启示[J]. 水利学报,2012,43(9):1034 − 1041. [ZHAI Yuanzheng, WANG Jinsheng. Temporal variations of elements of groundwater regime in Beijing Plain and its implications[J]. Journal of Hydrology Engineering,2012,43(9):1034 − 1041. (in Chinese with English abstract)

    Google Scholar

    [26] 翟远征, 王金生, 郇环, 等. 北京市平原区地下水更新能力变化的动态均衡证据[J]. 吉林大学学报(地球科学版),2012(1):198 − 205. [ZHAI Yuanzheng, WANG Jinsheng, HUAN Huan, et al. Groundwater dynamic equilibrium evidence for changes of renewability of groundwater in Beijing Plain[J]. Journal of Jilin University (Earth Science Edition),2012(1):198 − 205. (in Chinese with English abstract)

    Google Scholar

    [27] 中国地质调查局. 地下水脆弱性评估技术要求: GWI-D3[S]. 北京: 中国标准出版社, 2006.

    Google Scholar

    China Geological Survey. Technical requirements for groundwater vulnerability assessment: GWI-D3 [S]. Beijing: Standards Press of China, 2006. (in Chinese)

    Google Scholar

    [28] 徐晓敏. 层次分析法的运用[J]. 统计与决策,2008(1):156 − 158. [XU Xiaomin. The application of analytic hierarchy Process[J]. Statistics & Decision,2008(1):156 − 158. (in Chinese)

    Google Scholar

    [29] 芦红, 王丽, 杨鑫鑫, 等. 水力压裂对地下水影响的深部脆弱性评估[J]. 地球科学,2019,44(9):2920 − 2930. [LU Hong, WANG Li, YANG Xinxin, et al. Deep vulnerability assessment of hydraulic fracturing effect on groundwater[J]. Earth Science,2019,44(9):2920 − 2930. (in Chinese with English abstract)

    Google Scholar

    [30] SUN K, HU L, GUO J, et al. Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River[J]. Science of he Total Environment,2021,768(7):145489.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(6)

Article Metrics

Article views(3115) PDF downloads(188) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint