2022 Vol. 49, No. 2
Article Contents

PEI Lihua, YANG Xingyu, GUI Yue, WANG Zhaochang, ZHANG Yi. Influence of organic matter content and ingredient on the physical and mechanical properties of peat soils[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 77-85. doi: 10.16030/j.cnki.issn.1000-3665.202106009
Citation: PEI Lihua, YANG Xingyu, GUI Yue, WANG Zhaochang, ZHANG Yi. Influence of organic matter content and ingredient on the physical and mechanical properties of peat soils[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 77-85. doi: 10.16030/j.cnki.issn.1000-3665.202106009

Influence of organic matter content and ingredient on the physical and mechanical properties of peat soils

More Information
  • Peat soil is rich in organic matter, which is the main reason for its poor engineering properties. The content and compositions of organic matter of peat soil lead to the various physical and mechanical properties of this kind of soil. In order to clarify the influence of organic matter content, a series of laboratory tests are conducted on dozens of groups of amorphous peat soil samples with different organic matter content, and the laws of physics, deformation, strength and permeability with organic matter content are systematically analyzed. In order to compare the difference in engineering properties caused by the different organic matter components, the experimental data of the fiber peat soil from domestic and foreign literatures are collected and compared systematically with the physical and mechanical indexes of the amorphous peat soil. The results show that there is a certain linear relationship between the basic physical and mechanical indexes of the amorphous peat soil and the organic matter content. Among them, the initial void ratio (e0), natural moisture content (w0), liquid plastic limit (wp, wL), cohesion (c) increases linearly with the increase of the organic matter content. Specific gravity (Gs), consolidation coefficient (Cv) and internal friction angle (φ) decrease with the increase in organic matter content. Compared with the amorphous peat soil, the fiber peat soil is characterized by small specific gravity, high water content and a large void ratio. In terms of shear strength, the cohesive force of the amorphous peat increases with the increase of organic matter content, which is slightly higher than that of the fiber peat soil. The internal friction angle has a downward trend with the increase of organic matter content, which is about 1/5~1/14 that of the fiber peat soil. In terms of permeability, the initial permeability coefficient (kv0) and permeability index (Ck) of the amorphous peat soil decrease with the increase in organic matter content, and are generally smaller than those of the fiber peat soil.

  • 加载中
  • [1] WONG L S, HASHIM R, ALI F H. A review on hydraulic conductivity and compressibility of peat[J]. Journal of Applied Sciences,2009,9(18):3207 − 3218. doi: 10.3923/jas.2009.3207.3218

    CrossRef Google Scholar

    [2] HOBBS N B. Mire morphology and the properties and behaviour of some British and foreign peats[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1986,19(1):7 − 80. doi: 10.1144/GSL.QJEG.1986.019.01.02

    CrossRef Google Scholar

    [3] EDIL T B, Wang X. Shear strength and K0 of peats and organic soils[J]. Geotechnics of High Water Content Materials,2000:209 − 225.

    Google Scholar

    [4] 吕岩, 佴磊, 徐燕, 等. 有机质对草炭土物理力学性质影响的机理分析[J]. 岩土工程学报,2011,33(4):655 − 660. [LYU Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(4):655 − 660. (in Chinese with English abstract)

    Google Scholar

    [5] HUAT B B K, ASADI A, KAZEMIAN S. Experimental investigation on geomechanical properties of tropical organic soils and peat[J]. American Journal of Engineering and Applied Sciences,2009,2(1):184 − 188.

    Google Scholar

    [6] SKEMPTON A W, PETLEY D J. Ignition loss and other properties of peats and clays from avonmouth, King's Lynn and cranberry moss[J]. Géotechnique,1970,20(4):343 − 356.

    Google Scholar

    [7] SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1):1 − 13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)

    CrossRef Google Scholar

    [8] HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: General perspective[J]. International Journal of Physical Sciences,2011,6(8):1988 − 1996.

    Google Scholar

    [9] OLGUN M, YıLDıZ M. Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil[J]. Applied Clay Science,2010,48(4):615 − 621. doi: 10.1016/j.clay.2010.03.015

    CrossRef Google Scholar

    [10] ZENG L L, HONG Z S, WANG C, et al. Experimental study on physical properties of clays with organic matter soluble and insoluble in water[J]. Applied Clay Science,2016,132/133:660 − 667. doi: 10.1016/j.clay.2016.08.018

    CrossRef Google Scholar

    [11] RASHID M A, BROWN J D. Influence of marine organic compounds on the engineering properties of a remoulded sediment[J]. Engineering Geology,1975,9(2):141 − 154. doi: 10.1016/0013-7952(75)90036-8

    CrossRef Google Scholar

    [12] BOOTH J S, DAHL A G. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology,1986,6(3):281 − 297. doi: 10.1080/10641198609388191

    CrossRef Google Scholar

    [13] 牟春梅, 李佰锋. 有机质含量对软土力学性质影响效应分析[J]. 水文地质工程地质,2008,35(3):42 − 46. [MU Chunmei, LI Baifeng. Influence of organic matter on mechanical character of soft soil[J]. Hydrogeology & Engineering Geology,2008,35(3):42 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.03.011

    CrossRef Google Scholar

    [14] ODELL R T, THORNBURN T H, MCKENZIE L J. Relationships of atterberg limits to some other properties of Illinois soils[J]. Soil Science Society of America Journal,1960,24(4):297 − 300. doi: 10.2136/sssaj1960.03615995002400040025x

    CrossRef Google Scholar

    [15] WILLIAM H BUSCH , GEORGE H KEL. The physical properties of Peru-Chile continental margin sediments: the influence of coastal upwelling on sediment properties[J]. SEPM Journal of Sedimentary Research,1981,51(3):705 − 719.

    Google Scholar

    [16] BENNETT R H, LEHMAN L, HULBERT M H, et al. Interrelationships of organic carbon and submarine sediment geotechnical properties[J]. Marine Geotechnology,1985,6(1):61 − 98. doi: 10.1080/10641198509388180

    CrossRef Google Scholar

    [17] American Society for Testing and Materials. Standard test method for moisture, ash, and organic matter of peat and other organic soils: D 2974—87 [S]. West Conshohocken, PA, USA: American Society for Testing and Materials, 1989.

    Google Scholar

    [18] American Society for Testing and Materials. Standard test method for laboratory determination of the fiber content of peat samples by dry mass: D 1997—91[S]. West Conshohocken, PA, USA: American Society for Testing and Materials, 1991.

    Google Scholar

    [19] 中华人民共和国交通部. 公路土工试验规程: JTG E40—2007[S]. 北京: 人民交通出版社, 2007.

    Google Scholar

    Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineerin: JTG E40—2007[S]. Beijing: China Communications Press, 200. (in Chinese)

    Google Scholar

    [20] LONG M. Review of peat strength, peat characterisation and constitutive modelling of peat with reference to landslides[J]. Studia Geotechnica et Mechanica,2005,27(3/4):67 − 90.

    Google Scholar

    [21] 桂跃, 付坚, 吴承坤, 等. 高原湖相泥炭土渗透特性研究及机制分析[J]. 岩土力学,2016,37(11):3197 − 3207. [GUI Yue, FU Jian, WU Chengkun, et al. Hydraulic conductivity of lacustrine peaty soil in plateau areas and its mechanism analysis[J]. Rock and Soil Mechanics,2016,37(11):3197 − 3207. (in Chinese with English abstract)

    Google Scholar

    [22] 蒋忠信. 滇池泥炭土-地质·工程[M]. 成都: 西南交通大学出版社, 1994.

    Google Scholar

    JIANG Zhongxin. Dianchi peaty soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese)

    Google Scholar

    [23] ZWANENBURG C. The influence of anisotropy on the consolidation behaviour of peat[J]. TU Delft: Delft University of Technology. 2005.

    Google Scholar

    [24] YAMAGUCHI H, OHIRA Y, KOGURE K. Volume change characteristics of undisturbed fibrous peat[J]. Soils and Foundations,1985,25(2):119 − 134. doi: 10.3208/sandf1972.25.2_119

    CrossRef Google Scholar

    [25] VON POST L. Sveriges geologiska undersoknings torvinventering och nogra av dess hittils vunna resultat[J]. Svenska Mosskulturforeningens Tidskrift, Jonkoping, Sweden,1921,36:1 − 37.

    Google Scholar

    [26] MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(7):850 − 866. doi: 10.1061/(ASCE)1090-0241(2007)133:7(850)

    CrossRef Google Scholar

    [27] ULUSAY R, TUNCAY E, HASANCEBI N. Geo-engineering properties and settlement of peaty soils at an industrial site (Turkey)[J]. Bulletin of Engineering Geology and the Environment,2010,69(3):397 − 410. doi: 10.1007/s10064-010-0290-2

    CrossRef Google Scholar

    [28] BADV K, SAYADIAN T. An investigation into the geotechnical characteristics of Urmia peat[J]. Iranian Journal of Science and Technology - Transactions of Civil Engineering,2012,36(C2):167 − 180.

    Google Scholar

    [29] ELSAYED A, PAIKOWSKY S, KURUP P. Characteristics and engineering properties of peaty soil underlying cranberry bogs[C]//Geo-Frontiers Congress 2011. March 13−16, 2011, Dallas, Texas, USA. Reston, VA, USA: American Society of Civil Engineers, 2011: 2812 − 2821.

    Google Scholar

    [30] HANRAHAN E T. An investigation of some physical properties of peat[J]. Géotechnique,1954,4(3):108 − 123.

    Google Scholar

    [31] SAMSON L, ROCHELLE P L. Design and performance of an expressway constructed over peat by preloading[J]. Canadian Geotechnical Journal,1972,9(4):447 − 466. doi: 10.1139/t72-044

    CrossRef Google Scholar

    [32] LEFEBVRE G, LANGLOIS P, LUPIEN C, et al. Laboratory testing and in situ behaviour of peat as embankment foundation[J]. Canadian Geotechnical Journal,1984,21(2):322 − 337. doi: 10.1139/t84-033

    CrossRef Google Scholar

    [33] MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(5):411 − 421. doi: 10.1061/(ASCE)1090-0241(1997)123:5(411)

    CrossRef Google Scholar

    [34] DHOWIAN A W, EDIL T B. Consolidation behavior of peats[J]. Geotechnical Testing Journal,1980,3(3):105. doi: 10.1520/GTJ10881J

    CrossRef Google Scholar

    [35] AL-ANI H, OH E, CHAI G. Engineering properties of peat in estuarine environment[C]//Foundation and Soft Ground Engineering. 2013.

    Google Scholar

    [36] SUTEJO Y, SAGGAFF A, RAHAYU W, et al. Hydraulic conductivity and compressibility characteristics of fibrous peat[J]. IOP Conference Series:Materials Science and Engineering,2019,620:012053. doi: 10.1088/1757-899X/620/1/012053

    CrossRef Google Scholar

    [37] ALI F H, SING W L, HASHIM R. Engineering properties of improved fibrous peat[J]. Scientific Research & Essays, 2010, 5(2).

    Google Scholar

    [38] DE GUZMAN E M B, ALFARO M C. Geotechnical properties of fibrous and amorphous peats for the construction of road embankments[J]. Journal of Materials in Civil Engineering,2018,30(7):04018149. doi: 10.1061/(ASCE)MT.1943-5533.0002325

    CrossRef Google Scholar

    [39] BOELTER D H. Physical properties of peats as related to degree of decomposition[J]. Soil Science Society of America Journal,1969,33(4):606 − 609. doi: 10.2136/sssaj1969.03615995003300040033x

    CrossRef Google Scholar

    [40] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

    Google Scholar

    HUANG Changyong. Soil science[M]. Beijing: Chinese Agriculture Press, 2000. (in Chinese)

    Google Scholar

    [41] 张亚玲, 赵晓彦, 严群. 云母影响水泥软黏土强度的试验研究[J]. 水文地质工程地质,2021,48(4):101 − 108. [ZHANG Yaling, ZHAO Xiaoyan, YAN Qun. Experimental research on the influence of mica on strength of cement-reinforced soft clay[J]. Hydrogeology & Engineering Geology,2021,48(4):101 − 108. (in Chinese with English abstract)

    Google Scholar

    [42] TAVENAS F, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal,1983,20(4):645 − 660. doi: 10.1139/t83-073

    CrossRef Google Scholar

    [43] YAMAGUCHI H, OHIRA Y, KOGURE K, et al. Undrained shear characteristics of normally consolidated peat under triaxial compression and extension conditions[J]. Soils and Foundations,1985,25(3):1 − 18. doi: 10.3208/sandf1972.25.3_1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1991) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint