2022 Vol. 49, No. 1
Article Contents

QI Yongqiang, LI Wenpeng, ZHENG Yuejun, LI Hui, WANG Chengjian. Application of machine learning to aquifer analyses:Locating hydrogeological boundaries with water table monitoring data[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202104030
Citation: QI Yongqiang, LI Wenpeng, ZHENG Yuejun, LI Hui, WANG Chengjian. Application of machine learning to aquifer analyses:Locating hydrogeological boundaries with water table monitoring data[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202104030

Application of machine learning to aquifer analyses:Locating hydrogeological boundaries with water table monitoring data

  • Groundwater level fluctuations in China are being monitored with unprecedented frequency and density, which drives the need for mining such types of data. In a typical aquifer analysis project, groundwater level data is generally applied after the completion of the aquifer conceptual framework. When the temporal and spatial density of groundwater level data gradually increases, the information gain needs to be effectively transformed into conceptual knowledge of the model. In this study, we propose a method to identify hydrological boundaries based on the groundwater level monitoring data. In this method we discretize space into a triangular mesh using monitoring wells as the initial nodes, and a transformation function gradF is defined to calculate the hydraulic gradient at any given location on the mesh. The hydraulic gradient field is subsequently use to drive an array of randomly scattered particles to obtain the streamline representation of the flow field, which will in turn serve as the basis for deducing and refining the recharge and discharge boundaries of a hydrogeological domain. This method is implemented into the geo-environmental scientific computation platform (EnviFusion-CGS), and a detailed work flow is developed to facilitate the development of the aquifer conceptual model. This method is applied to the hydrogeological investigation of the Dagu aquifer located in Qingdao of Shandong Province, where the spatial distributions and dynamic fluctuations of the hydrogeological boundaries are identified.

  • 加载中
  • [1] 严宇红, 周政辉. 国家地下水监测工程站网布设成果综述[J]. 水文,2017,37(5):74 − 78. [YAN Yuhong, ZHOU Zhenghui. Introduction to network layout of national groundwater monitoring project[J]. Journal of China Hydrology,2017,37(5):74 − 78. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0852.2017.05.014

    CrossRef Google Scholar

    [2] 田志仁, 李名升, 夏新, 等. 我国地下水环境监测现状和工作建议[J]. 环境监控与预警,2020,12(6):1 − 6. [TIAN Zhiren, LI Mingsheng, XIA Xin, et al. Current situation and suggestions of groundwater monitoring work in China[J]. Environmental Monitoring and Forewarning,2020,12(6):1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-6732.2020.06.001

    CrossRef Google Scholar

    [3] RAJABI M M, ATAIE-ASHTIANI B, SIMMONS C T. Model-data interaction in groundwater studies: Review of methods, applications and future directions[J]. Journal of Hydrology,2018,567:457 − 477. doi: 10.1016/j.jhydrol.2018.09.053

    CrossRef Google Scholar

    [4] 薛禹群, 吴吉春. 地下水数值模拟在我国—回顾与展望[J]. 水文地质工程地质,1997,24(4):21 − 24. [XUE Yuqun, WU Jichun. Numerical simulation of groundwater in retrospect and prospect in China[J]. Hydrogeology & Engineering Geology,1997,24(4):21 − 24. (in Chinese)

    Google Scholar

    [5] 薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报,2010,16(1):1 − 6. [XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geological Journal of China Universities,2010,16(1):1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7493.2010.01.001

    CrossRef Google Scholar

    [6] 中国地质调查局. 水文地质手册[M]. 2版. 北京: 地质出版社, 2012.

    Google Scholar

    China Geological Survey. Handbook of hydrogeology[M]. 2nd ed. Beijing: Geological Publishing House, 2012. (in Chinese)

    Google Scholar

    [7] 易立新, 徐鹤. 地下水数值模拟[M]. 北京: 化学工业出版社, 2009.

    Google Scholar

    YI Lixin, XU He. Numerical simulation of groundwater[M]. Beijing: Chemical Industry Press, 2009. (in Chinese)

    Google Scholar

    [8] 李家兴. 基于深度学习的含水层参数反演研究[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    LI Jiaxing. Research on inverse problem of aquifer parameters based on deep learning[D]. Beijing: China University of Geosciences, 2020. (in Chinese with English abstract)

    Google Scholar

    [9] 李竞生, 姚磊华. 含水层参数识别方法[M]. 北京: 地质出版社, 2003.

    Google Scholar

    LI Jingsheng, YAO Leihua. Identification method of aquifer parameter[M]. Beijing: Geological Publishing House, 2003. (in Chinese)

    Google Scholar

    [10] 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4):327 − 336. [HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence,2014,27(4):327 − 336. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-6059.2014.04.007

    CrossRef Google Scholar

    [11] 刘光亚. 水文地质数值模拟的拟合问题[J]. 水文地质工程地质,1992(4):2 − 4. [LIU Guangya. The fitting problem of hydrogeological numerical simulation[J]. Hydrogeology & Engineering Geology,1992(4):2 − 4. (in Chinese)

    Google Scholar

    [12] 张双圣, 强静, 刘汉湖, 等. 基于贝叶斯公式的地下水污染源识别[J]. 中国环境科学,2019,39(4):1568 − 1578. [ZHANG Shuangsheng, QIANG Jing, LIU Hanhu, et al. Identification of groundwater pollution sources based on Bayes' theorem[J]. China Environmental Science,2019,39(4):1568 − 1578. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2019.04.027

    CrossRef Google Scholar

    [13] NESTEROV Y. Introductory lectures on convex optimization: a basic course (applied optimization)[M]. Boston: Springer Science & Business Media, 2004: 51−110.

    Google Scholar

    [14] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报,2016,39(8):1697 − 1716. [JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers,2016,39(8):1697 − 1716. (in Chinese with English abstract)

    Google Scholar

    [15] 褚蕾蕾, 陈绥阳, 周梦. 计算智能的数学基础[M]. 北京: 科学出版社, 2002.

    Google Scholar

    CHU Leilei, CHEN Suiyang, ZHOU Meng. Mathematical basis of Computational Intelligence [M]. Beijing: Science Press, 2002. (in Chinese)

    Google Scholar

    [16] 陈海虹, 黄彪, 刘峰, 等. 机器学习原理及应用[M]. 成都: 电子科技大学出版社, 2017.

    Google Scholar

    CHEN Haihong, HUANG Biao, LIU Feng, et al. Principle and application of machine learning[M]. Chengdu: University of Electronic Science and Technology of China Press, 2017. (in Chinese)

    Google Scholar

    [17] WANG J, TAO Q. Machine learning: the state of the art[J]. IEEE Intelligent Systems,2008,23(6):49 − 55. doi: 10.1109/MIS.2008.107

    CrossRef Google Scholar

    [18] BOTTOU L, CURTIS F E, NOCEDAL J. Optimization methods for large-scale machine learning[J]. SIAM Review,2018,60(2):223 − 311. doi: 10.1137/16M1080173

    CrossRef Google Scholar

    [19] POLYAK B T. Introduction to optimization[M]. New York: Optimization Software, 1987.

    Google Scholar

    [20] CAUCHY A L. Méthode générale pour la résolution des systemes d'équations simultanées[J]. Comptes rendus de l'Académie des Sciences,1847:536 − 538.

    Google Scholar

    [21] ROBBINS H, MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics,1951,22(3):400 − 407. doi: 10.1214/aoms/1177729586

    CrossRef Google Scholar

    [22] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533 − 536. doi: 10.1038/323533a0

    CrossRef Google Scholar

    [23] 史加荣, 王丹, 尚凡华, 等. 随机梯度下降算法研究进展[J]. 自动化学报,2021,47(9):2103-2119. [SHI Jiarong, WANG Dan, SHANG Fanhua, et al. Research advances on stochastic gradient descent algorithms[J]. Acta Automatica Sinica,2021,47(9):2103-2119. (in Chinese with English abstract)

    Google Scholar

    [24] ATTOUCH H, BOLTE J, SVAITER B F. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[J]. Mathematical Programming,2013,137(1/2):91 − 129.

    Google Scholar

    [25] 王惊晓, 高乾坤, 汪群山. 一种具有最优收敛速度的正则化境面下降算法[J]. 计算机工程,2014,40(6):148 − 153. [WANG Jingxiao, GAO Qiankun, WANG Qunshan. A regularization mirror descent algorithm with optimal convergence rate[J]. Computer Engineering,2014,40(6):148 − 153. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3428.2014.06.032

    CrossRef Google Scholar

    [26] 刘梓懿. 多步梯度法的收敛性研究[D]. 武汉: 武汉科技大学, 2020.

    Google Scholar

    LIU Ziyi. On the convergence rate of the multi-step methods[D]. Wuhan: Wuhan University of Science and Technology, 2020. (in Chinese with English abstract)

    Google Scholar

    [27] GHADIMI E, SHAMES I, JOHANSSON M. Multi-step gradient methods for networked optimization[J]. IEEE Transactions on Signal Processing,2013,61(21):5417 − 5429. doi: 10.1109/TSP.2013.2278149

    CrossRef Google Scholar

    [28] 孔康, 汪群山, 梁万路. L1正则化机器学习问题求解分析[J]. 计算机工程,2011,37(17):175 − 177. [KONG Kang, WANG Qunshan, LIANG Wanlu. Solution analysis of L1 regularized machine learning problem[J]. Computer Engineering,2011,37(17):175 − 177. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3428.2011.17.059

    CrossRef Google Scholar

    [29] TSENG P, YUN S. Incrementally updated gradient methods for constrained and regularized optimization[J]. Journal of Optimization Theory and Applications,2014,160(3):832 − 853. doi: 10.1007/s10957-013-0409-2

    CrossRef Google Scholar

    [30] YU N. Gradient methods for minimizing composite functions[J]. Mathematical Programming,2013,140(1):125 − 161. doi: 10.1007/s10107-012-0629-5

    CrossRef Google Scholar

    [31] DAVID W P. User’s guide for MODPATH/MODPATH-PLOT, Version 3: A particle tracking post-processing package for MODFLOW, the U. S. Geological Survey finite-difference ground-water flow model[R]. Reston: Geological Survey, 1994.

    Google Scholar

    [32] RUNGE C D T. Über die numerische Auflösung von Differentialgleichungen[J]. Mathematische Annalen, Springer,1895,46(2):167 − 178.

    Google Scholar

    [33] KUTTA M. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen[J]. Zeitschrift für Mathematik und Physik,1901,46:435 − 453.

    Google Scholar

    [34] 廖凯华. 大沽河流域土壤水资源评价及农业节水灌溉模式研究[D]. 青岛: 青岛大学, 2009.

    Google Scholar

    LIAO Kaihua. Study on evaluation of soil water resources and water saving irrigation modes in Dagu river basin[D]. Qingdao: Qingdao University, 2009. (in Chinese with English abstract)

    Google Scholar

    [35] 尹子悦. 大沽河流域地下水时空演变特征及数值模拟[D]. 青岛: 青岛大学, 2019.

    Google Scholar

    YIN Ziyue. Spatial-temporal variations of groundwater and its numerical simulation in the Dagu river basin[D]. Qingdao: Qingdao University, 2019. (in Chinese with English abstract)

    Google Scholar

    [36] 贾立华. 大沽河地下水库脆弱性评价[D]. 青岛: 中国海洋大学, 2003.

    Google Scholar

    JIA Lihua. Vulnerability assessment to the Dagu river groundwater reservoir[D]. Qingdao: Ocean University of China, 2003. (in Chinese with English abstract)

    Google Scholar

    [37] 林国庆, 郑西来, 李海明. 下水库人工补给的模型研究—以大沽河地下水库为例[J]. 中国海洋大学学报(自然科学版),2005,35(5):745 − 750. [LIN Guoqing, ZHENG Xilai, LI Haiming. Simulation of artificial recharge for a groundwater reservoir: a case study of the daguhe groundwater reservoir[J]. Journal of Ocean University of Qingdao,2005,35(5):745 − 750. (in Chinese with English abstract)

    Google Scholar

    [38] 张旭洋, 林青, 黄修东, 等. 大沽河流域土壤水-地下水流耦合模拟及补给量估算[J]. 土壤学报,2019,56(1):101 − 113. [ZHANG Xuyang, LIN Qing, HUANG Xiudong, et al. Numerical simulation coupling soil water/groundwater and estimation of groundwater recharge in dagu river basin[J]. Acta Pedologica Sinica,2019,56(1):101 − 113. (in Chinese with English abstract)

    Google Scholar

    [39] 尹明泉, 王治良, 王通国, 等. 青岛市大沽河水源地地下水资源潜力分析[J]. 山东国土资源,2005,21(4):30 − 34. [YIN Mingquan, WANG Zhiliang, WANG Tongguo, et al. Potentiality analysis on underground water resource in daguhe water source area in Qingdao City[J]. Land and Resources in Shandong Province,2005,21(4):30 − 34. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6979.2005.04.014

    CrossRef Google Scholar

    [40] 杨丽娟. 大沽河平原区地下水资源评价[D]. 青岛: 中国海洋大学, 2012.

    Google Scholar

    YANG Lijuan. Evaluation of groundwater resources in dagu river[D]. Qingdao: Ocean University of China, 2012. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2367) PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint