2022 Vol. 49, No. 1
Article Contents

XUAN Chengqiang, ZHANG Yangsong, XU Wentao. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 75-83. doi: 10.16030/j.cnki.issn.1000-3665.202104029
Citation: XUAN Chengqiang, ZHANG Yangsong, XU Wentao. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 75-83. doi: 10.16030/j.cnki.issn.1000-3665.202104029

Extraction of the discontinuity orientation from a digital surface model

More Information
  • The traditional field contact measurement for obtaining parameters of the rock mass discontinuity is of low efficiency and big workload, and the accuracy of the results are affected by human factors. In this paper a method is presented to automatically recognize the discontinuity based on the three dimensional (3D) digital surface model (DSM) of rock mass obtained with the digital photogrammetry and structure from motion (SFM) algorithm. The steps of rock mass DSM reconstruction include collecting rock mass images, matching image features based on the Scale-Invariant Feature Transform (SIFT) algorithm, reconstructing sparse point cloud, encrypting point cloud, and reconstructing the rock mass surface model. The main flow of the discontinuity recognition method include smoothing the DSM of rock mass, changing the searching radius and the angle threshold to split model plane, searching the discontinuity based on the regional growth principle, and fitting the discontinuity based on random sampling consistency to get the orientation. The method is applied to the underground experimental roadway in the Beishan area of Gansu, and the reconstruction of 3D digital surface model of roadway and the orientation acquisition of discontinuities are realized. The discontinuities are also mapped on the roadway model by groups. A comparison the results with those of the manual field measurement method and the existing discontinuity recognition software shows that the method proposed in this paper is of good accuracy and can provide a certain reference for engineering applications.

  • 加载中
  • [1] 徐则双. 基于近景摄影测量获取结构面信息的岩体质量评价[D]. 长春: 吉林大学, 2019.

    Google Scholar

    XU Zeshuang. Quality evaluation of rock mass based on close-range photogrammetry to structural plane information[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)

    Google Scholar

    [2] XU W T, ZHANG Y S, LI X Z, et al. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: a case study of the Xinchang underground research laboratory site, China[J]. Engineering Geology,2020,269:105553. doi: 10.1016/j.enggeo.2020.105553

    CrossRef Google Scholar

    [3] LATO M, DIEDERICHS M S, HUTCHINSON D J, et al. Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(1):194 − 199. doi: 10.1016/j.ijrmms.2008.04.007

    CrossRef Google Scholar

    [4] GUO J T, LIU S J, ZHANG P N, et al. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds[J]. Computers & Geosciences,2017,103:164 − 172.

    Google Scholar

    [5] RIQUELME A J, ABELLÁN A, TOMÁS R. Discontinuity spacing analysis in rock masses using 3D point clouds[J]. Engineering Geology,2015,195:185 − 195. doi: 10.1016/j.enggeo.2015.06.009

    CrossRef Google Scholar

    [6] 黄海宁, 黄健, 周春宏, 等. 无人机影像在高陡边坡危岩体调查中的应用[J]. 水文地质工程地质,2019,46(6):149 − 155. [HUANG Haining, HUANG Jian, ZHOU Chunhong, et al. Application of UAV images to rockfall investigation at the high and steep slope[J]. Hydrogeology & Engineering Geology,2019,46(6):149 − 155. (in Chinese with English abstract)

    Google Scholar

    [7] 胡瀚, 王凤艳, 王明常, 等. 数字摄影测量采集岩体结构面信息的控制测量方法[J]. 世界地质,2018,37(1):309 − 315. [HU Han, WANG Fengyan, WANG Mingchang, et al. Control survey for rock discontinuity information acquisition by digital photogrammetry[J]. Global Geology,2018,37(1):309 − 315. (in Chinese with English abstract)

    Google Scholar

    [8] 嵇美伟, 章杨松, 李晓昭. 基于摄影测量技术的岩体结构面参数的获取[J]. 科学技术与工程,2019,19(24):344 − 351. [JI Meiwei, ZHANG Yangsong, LI Xiaozhao. Extraction of rock mass structural attitudes based on photogrammetry technology[J]. Science Technology and Engineering,2019,19(24):344 − 351. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2019.24.054

    CrossRef Google Scholar

    [9] 陈建琴, 李晓军, 朱合华. 基于点云的岩体间距与粗糙度的自动化提取[J]. 地下空间与工程学报,2017,13(1):133 − 140. [CHEN Jianqin, LI Xiaojun, ZHU Hehua. Automatic extract of rock mass spacing and roughness based on point clouds[J]. Chinese Journal of Underground Space and Engineering,2017,13(1):133 − 140. (in Chinese with English abstract)

    Google Scholar

    [10] SUN Shangqu, LI Liping, QIN Chengshuai, et al. Digitizing and modeling of structural planes in fractured rock mass tunnel based on SFM[J]. Arabian Journal of Geosciences,2019,12(11):1 − 13.

    Google Scholar

    [11] 杨文治, 赵鹏. 基于三维激光点云数据的岩体结构面提取方法研究[J]. 勘察科学技术,2015(3):22 − 25. [YANG Wenzhi, ZHAO Peng. Research on extraction method of rock structural plane based on three-dimensional laser point cloud data[J]. Site Investigation Science and Technology,2015(3):22 − 25. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3946.2015.03.007

    CrossRef Google Scholar

    [12] CACCIARI P P, FUTAI M M. Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning[J]. Bulletin of Engineering Geology and the Environment,2016,75(1):223 − 237. doi: 10.1007/s10064-015-0748-3

    CrossRef Google Scholar

    [13] RIQUELME A J, ABELLÁN A, TOMÁS R, et al. A new approach for semi-automatic rock mass joints recognition from 3D point clouds[J]. Computers & Geosciences,2014,68:38 − 52.

    Google Scholar

    [14] CHEN J Q, ZHU H H, LI X J. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers & Geosciences,2016,95:18 − 31.

    Google Scholar

    [15] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91 − 110. doi: 10.1023/B:VISI.0000029664.99615.94

    CrossRef Google Scholar

    [16] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. September 20−27, 1999, Kerkyra, Greece. IEEE, 1999: 1150−1157.

    Google Scholar

    [17] 韩超. 基于无人机航拍图像的三维重建SFM算法研究[D]. 呼和浩特: 内蒙古工业大学, 2019.

    Google Scholar

    HAN Chao. SFM algorithm of 3D reconstruction from UAV aerial images[D]. Hohhot: Inner Mongolia University of Tehchnology, 2019. (in Chinese with English abstract)

    Google Scholar

    [18] FURUKAWA Y, PONCE J. Carved visual hulls for image-based modeling[J]. International Journal of Computer Vision,2009,81(1):53 − 67. doi: 10.1007/s11263-008-0134-8

    CrossRef Google Scholar

    [19] CIGNONI P, CALLIERI M, CORSINI M, et al. MeshLab: an open-source mesh processing tool[J]. Computing,2008,1:129 − 136.

    Google Scholar

    [20] UMILI G, FERRERO A, EINSTEIN H H. A new method for automatic discontinuity traces sampling on rock mass 3D model[J]. Computers & Geosciences,2013,51:182 − 192.

    Google Scholar

    [21] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381 − 395. doi: 10.1145/358669.358692

    CrossRef Google Scholar

    [22] WANG J, CHEN L, SU R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering,2018,10(3):411 − 435. doi: 10.1016/j.jrmge.2018.03.002

    CrossRef Google Scholar

    [23] FISHER R. Dispersion on a sphere[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1953,217(1130):295 − 305. doi: 10.1098/rspa.1953.0064

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(2287) PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint